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Abstract: 

This deliverable reports on our progress towards developing the paradigm of In-network 
Management (INM), a clean-slate approach to network management, aimed specifically at the 
effective management of large, dynamic networks, where a low rate of interaction between an 
outside management entity and the network will be required. The idea is that management 
tasks are delegated from management stations outside the network to a self-organizing 
management plane inside the managed system. This is enabled through decentralization, self-
organization, embedding of functionality and autonomy. Under this paradigm, the managed 
system executes functions –locally or end-to-end– on its own and performs, for instance, 
reconfiguration or self-healing in an autonomic manner. It reports results of its action to an 
outside management system or triggers exceptions if intervention from outside is needed. 

The deliverable describes the main results of WP4 achieved during the first year of the project 
and it complements deliverable D-4.1, which presents use cases illustrating the potential of 
INM capabilities. It contains a first version of the INM framework design, which defines the 
structure of the management plane inside the network, supports the embedding of 
management functions and provides reusable components to compose collaborating self-
managed entities. Second, it presents a set of algorithms and concepts developed for real-
time management, with emphasis on distributed monitoring in large-scale dynamic 
environments. Third, it reports on work that demonstrates the feasibility of rapid re-
configurability for selected management algorithms and functions under the INM paradigm. 
Extensive simulations have demonstrated the effectiveness of the approach and have 
quantified key trade-offs. 

The report ends with an outlook of the project plans for the second year, where effort will be 
devoted to proving the technical feasibility through prototype implementation of selected 
functions and integration of the work with that other WPs. 
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Executive Summary 

 

This deliverable reports on our progress towards developing the paradigm of In-network 
Management (INM), a clean-slate approach to Internet management, aimed specifically at the 
effective management of large, dynamic networks, where a low rate of interaction between an 
outside management entity and the network will be required. The idea is that management 
tasks are delegated from management stations outside the network to a self-organizing 
management plane inside the managed system. The INM approach thus involves embedding 
management intelligence in the network, enabled through decentralization, self-organization, 
embedding of functionality and autonomy. Under this paradigm, the managed system 
executes functions –local or end-to-end– on its own and performs, for instance, 
reconfiguration or self-healing in an autonomic manner. It reports results of its action to an 
outside management system or triggers exceptions if intervention from outside is needed. 

The deliverable describes the main results of WP4 achieved during the first year of the project 
and it complements deliverable 4.1, which presents use cases illustrating the potential of INM 
capabilities. It contains a first version of the INM framework design, which defines the 
structure of the management plane inside the network, supports the embedding of 
management functions and provides reusable components to compose collaborating self-
managed entities. Second, it presents a set of algorithms and concepts developed for real-
time management, with emphasis on distributed monitoring in large-scale dynamic 
environments. Third, it reports on work that demonstrates the feasibility of rapid re-
configurability for selected management algorithms and functions under the INM paradigm. 
Extensive simulations have demonstrated the effectiveness of the approach and have 
quantified key trade-offs. 

The report ends with an outlook of the project plans for the second year, where effort will be 
devoted to proving the technical feasibility through prototype implementation of selected 
functions and integration of the work with that other WPs.  
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Terminology 

 

Architectural elements of INM: collective term for the following five architectural elements of 
the INM framework: management capabilities, functional components, INM entities, INM 
protocol, and INM registry. 

Atomic service: an atomic service is a service whose implementation is self-contained and 
does not invoke any other services. 

Capability: the potential of one or more resources (logical or physical) to be able to achieve 
specific effects or actions, or declared goals and objectives. 

Capability Level Statement (CLS): a declaration by one or more resources stating the 
capability of the resource(s). 

Composite service: a composite service is a service whose implementation calls other 
services to provide and fulfil its obligations in terms of service provisioning. In other terms, the 
services that are created by the federation of other services are called composite services. 

Contract: a contract is an agreement between two parties, generally positing that one party 
performs a service or provides a product in exchange for compensation from the other party. 
The contract additionally defines consequences in case the agreement is not fulfilled, and if 
there are any factors that may justify not fulfilling parts of the agreement.  

Dedicated management entity (ME): an INM entity that bundles management capabilities 
that are not tied to any self-managing entity. 

Dedicated management functional component (dmFC): a functional component that 
encapsulates only management functionality (example: cross-layer neighbour table). 

Entity: a network element that can be viewed as a network node. There are different types of 
entities according to their capabilities (e.g. access entity, core entity, distribution entity). 

External management capability (exMC): any management capability that is located 
external to any INM entity or functional component. 

Functional component (FC): designation for any implementation-level component that 
encapsulates a network service and/or management functionality within a single entity. 

Governance: the process of refining an end-user service description (entered by the business 
service manager (BSM)) to Service Level Agreements (SLAs), which provide the objectives for 
composite and atomic services delivered by self-managing entities. 

Governance domain: the domain (network elements, managed functions, subordinate SEs) 
over which an entity (for example an SE, the BSM, or an organization) has jurisdiction. 

I-NAME: (In-Network Autonomic Management Environment): autonomic reacting environment 
that generates a set of management messages for resource control and maintenance 
accordingly to the dynamically changing network's configuration.  

Inherent management capability (ihMC): management capability that may be only present 
within self-managing INM entities / functional components. 

INM artefacts: collective term for the architectural elements, technical framework, and 
algorithms. 

INM entity: type of architectural element comprising dedicated management entities (MEs) 
and self-managing entities (SEs). 

INM principles: collective term for the five extremal clean slate principles that underlie INM, 
comprising the intrinsic, inherent, autonomous, abstraction, and transition principle. 

INM protocol: the protocol specific to in-network management that mediates management 
between INM entities. 

https://wiki.verkstad.net/FI/INM
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INM registry: architectural element that contains the necessary functionality to translate 
between INM entities and functional components. 

INM transitional degrees: design space comprising the dimensions of the degree of 
embedding, autonomy, and abstraction that lead towards the extremal INM paradigm. 

Integrated management capability (igMC): management capability that may be present in 
both self-managing and dedicated INM entities / functional components. 

Lifecycle of self-managing entities: defines the set of actions performed during the 
introduction of a self-managing entity into the self-organizing management plane, including 1) 
design and implementation, 2) deployment and activation, 3) operation and reconfiguration, 
and 4) termination and deregistration of a self-managing entity. 

Management capability (MC): an abstraction for fine-granular management capabilities, the 
building blocks for composing any more complex management functions. 

Management interfaces: collective term for the organization and collaboration interface that 
are supported by management capabilities, functional components and INM entities. 

Management plane (MP): an abstraction of management functionality in a network or system. 
In the case of INM, the management plane resides inside the self-managing system, which 
means it is realized as part of the network infrastructure. 

Node: a node is a physical entity that contains a set of management capabilities, functional 
components, and an INM registry. 

Provider: entity who is responsible for and operates the network infrastructure (physical or 
virtual) or services in general. 

Report generator: in the context of event handling, it is the role assumed by an INM entity or 
functional component which is able to generate a report. 

Report handler: in the context of event handling, it is the role assumed by an INM entity or 
functional component which is able to handle a report. 

Self-management: the process by which a network/system (or part of it) governs its own 
behaviour and operation without human intervention. 

Self-management by objective: the process by which a network/system (or part of it) 
governs its own behaviour and operation without human intervention, given a set of objectives 
that it gets through automatic refinement of a formalised end-user service description. 

Self-managing entity (SE): a self-managing entity is a component of a system that is self-
managed by objective and can autonomously perform a series of management-related tasks, 
such as self-configuration, self-healing, automatic discovery of peer entities and negotiation of 
service level agreements. 

Self-managing functional component (smFC): a functional component that encapsulates 
both, a network service and management functionality (examples: Generic Path, NetInf). 

Separated management capability (spMC): designation for integrated management 
capabilities in a dedicated management functional component, which, from the perspective of 
another self-managing functional component (smFC), appear separated from that smFC. 

Service: a mechanism to enable access to one or more capabilities, where the access is 
provided using a prescribed interface and is exercised consistently with constraints and 
policies as specified by the service description. 

Service description / service specification: a description of a service in terms of interfaces, 
operations, semantics, dyn

 

Service Level Agreement (SLA): a contractual specification provided to a consumer of a 
service describing the service and the quality associated to the service. 

Structure: a self-organized set of INM entities sharing the same requirements. 
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1 Introduction 

Work Package 4 (WP4) is working towards the definition of novel management instruments to 
operate the future Internet. Following a clean slate approach, it defines a new architecture to 
support reliable and scalable management operations as well as the algorithms to implement 
them as distributed real-time functions. 

1.1 Motivation of Document  

The work dedicated towards network management in 4WARD is triggered by limitations 
becoming apparent in current network management. As documented in WP4‘s previous 
deliverable D4.1 [1], today's centralized network management will no longer be applicable to 
the large-scale networks and services foreseen in the future; therefore new approaches for 
management architectures are needed. 

4WARD In-Network Management (INM) addresses these challenges by introducing a thin, 
pervasive layer which performs core management functionalities already inside the network, 
but which can be complemented by additional management functionality outside the network 
where necessary. 

This document is a deliverable summarizing the main concepts developed by WP4 during the 
first year and follows the previous deliverable, describing scenarios where traditional network 
management fall short. The concepts elaborated in this document will be further elaborated in 
final design document, and then evaluated and implemented through a prototype. 

1.2 General Presentation of the 4WARD Project  

4WARD aims to increase the competitiveness of the European networking industry and to 
improve the quality of life for European citizens by creating a new generation of dependable 
and interoperable networks providing direct and ubiquitous access to information, evolving 
and replacing today‘s Internet paradigms. This will pave the ground for more advanced and 
more affordable communication services for the next decades, beyond 2015. 

Unlike most other EU projects in this area, 4WARD is committed to a ‗clean slate approach‘ to 
address these issues. 

The term ‗clean slate approach‘ stands for a coherent solution that breaks the current 
network's stagnation imposed by the need to ‗support current technologies and solutions‘; It is 
the answer to the following question: ‗With what we know today, if we were to start again from 
scratch, how would we design a global communications infrastructure?‘ 

Hence, the overall objective of 4WARD is to create a framework of innovative networking 
models that together will define the direction towards a ‗Network of the Future‘. In the current 
(first) phase, focus of the project is on exploring specific technology directions with identified 
key potential for the future and assessing the feasibility of concepts in first validation studies. 

The key technology research areas identified for the 4WARD approach are: 

 Architecture framework: 4WARD will improve the ability to design inter-operable and 
complementary families of network architectures and develop an integrated framework 
to represent, design, implement and operate network architectures that all belong to a 
common family of interoperable network instances.  

 Virtualisation: 4WARD will enable the co-existence of multiple networks on common 
platforms through carrier-grade virtualisation of networking resources. 4WARD will 
provide means to support the instantiation and dependable inter-operation of different 
networks on a single infrastructure in a commercial setting. 

 In-network management: 4WARD will enhance the utility of networks by making them 
self-managing. 4WARD aims for an embedded ‗default-on‘ management capability 
which is an inseparable part of the network itself. This capability will generate extra 
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value in terms of guaranteed performance in a cost effective way, and will enable the 
networks to adjust themselves to different sizes, configurations and external 
conditions. 

 Generic connectivity: 4WARD will supersede the current point-to-point forwarding 
and routing scheme by a new paradigm of functionally rich communication paths, 
increasing the capacity and dependability of networks composed of mixed 
technologies (wired and wireless) and supporting applications that require more than 
today's point-to-point dissemination pattern. These new communication paths will deal 
with mobility, security and Quality of Service requirements in an integrated way.  

 Content-centric network of information: Finally 4WARD will revolutionise application 
support by a new information-centric paradigm in place of the old host-centric 
approach: 4WARD will create a new network of information paradigm where 
information objects have their own identity and are no longer bound to specific hosts.  

These 4WARD technology solutions shall embrace the full range of current and future network 
technologies. 4WARD technical results will be disseminated in the context of non-technical 
drivers to bridge the gap between innovative research results and utilization for the benefit of 
the economy and the society at large. 

1.3 Presentation of Related Work Packages 

In this section we present key relations of WP4 with other WPs within the 4WARD project and 
we briefly state for each work package the relation to WP4.  

WP1: Business Innovation, Regulation, and Dissemination – BIRD 

WP1 follows the idea that research on technology should be accompanied by research on the 
context of its intended usage. The WP covers non-technical topics and focuses especially on 
society, business and governance issues. WP4 provides technical means to support novel 
business models in the Future Internet and to enforce regulatory changes. 

WP2: New Architecture Principles and Concepts – NewAPC 

WP2 is exploring the development of a design process for combining existing, or specifying 
and generating new networks with customized architectures. WP4 is developing the following 
functions that can be mapped into WP2 framework: 

 A set of management operations. 

 Registration and access mechanisms for embedded self-descriptive management 
functions. 

 Scheme, strategies, and protocols for collaborative monitoring, self-optimizing, and 
self-healing. 

WP3: Network Virtualization – Vnet 

WP3 will investigate the approach of using virtualisation to enable flexible and innovative 
networking architectures. Virtualization allows an evolution of communication technology while 
largely reusing deployed infrastructure. It further provides a general framework for network 
sharing: providing different networking services of different network service providers on a 
common physical infrastructure. WP4 is developing the following functions for Vnet 
management: 

 Monitoring 

 Adaptation algorithms, which most likely will run over a single Vnet 

 Bootstrapping methods will be delayed to the beginning of the joint Task TC34. 
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WP5: Forwarding and Multiplexing for Generic Paths – ForMux 

WP5 is focused on development of a model and underlying mechanisms for Generic Path 
abstraction that would provide unified means for applications to address transport capabilities 
of the network. WP4 provides the following functions: 

 Methods for optimization across different elements 

 Support of business models. 

INM has the responsibility of network-wide management. As such, load balancing is a key 
function, which must be addressed in a top-down manner. As congestion is detected or is 
proactively predicted to be developed, some traffic must be routed away from this area. Since 
route setup is a function mainly performed by a GP, INM can better support routing functions 
to accommodate load-balancing and other specific management objectives, and enforce them 
into the WP5-routing entity through corrective actions. 

WP6: Network of Information – NetInf 

The overall objective for WP6 is to investigate a new information architecture, called NetInf, 
where information retrieval and storage act on the objects themselves rather than on the 
nodes. The joint Task TC46 produced a milestone describing the relation between the two 
WPs in detail. This is discussed in detail in Section 6.2 and 6.3. It is assumed that 
management of the NetInf objects themselves is inherently done by the objects (e.g. 
instantiation of the object). WP4 addresses the network management aspects that go beyond 
the management of the NetInf object management capabilities (e.g., managing a service, 
topology discovery, the traditional FCAPS capabilities). 

1.4 Objective of Document 

This document contains the main concepts for the design of the new INM framework. It 
identifies the specific requirements for designing the management capabilities, based on 
which a framework for in-network management will be presented. Aspects of self-organization 
of the distributed functions, the collaborative management support, as well as the registration 
of management functions are described as well. The key algorithmic studies for real-time and 
adaptation mechanism in INM are presented and first results discussed. 

These concepts are the intermediary step towards the definition of the complete INM design 
and its subsequent evaluation and implementation. This will be achieved in the second year of 
the 4WARD project. 

1.5 Structure of Document 

After the introduction given in this section, the document is structured as follows:  

Chapter 2 summarizes the motivation for INM and explains the business values of INM 
through self-management. 

Chapter 3 introduces the main concepts of the INM framework. The main design principles for 
the clean slate approach are identified. Based on that, the main components are introduced 
and self-organization mechanisms are presented. Finally the chapter concludes with a couple 
of examples on instantiating algorithms in the framework. 

Chapter 4 introduces algorithms for real-time monitoring and situation awareness. First 
different schemes for the generation of global aggregates are presented, then the 
mechanisms for situation awareness and anomaly detection. 

Chapter 5 discusses adaptation schemes of INM. First, an analysis on the different trade-off 
about distributed and centralized approaches are presented. Then, a set of adaptation 
schemes for the INM management plane as well as network resources in 4WARD is 
presented. 
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2 Motivation for In-Network Management and Scope of Work 

2.1 Limitations of Traditional Approaches 

With current technologies, management functions typically reside outside the network in 
management stations and servers, which interact with network elements and devices via 
management protocols, in order to execute management tasks, including fault, configuration, 
accounting, performance, and security management. Most of these tasks are performed on a 
per-device basis. During network operation, for instance, a management station periodically 
polls individual devices in its domain for the values of local variables, such as devices 
counters or performance parameters. These variables are then processed on the 
management station to compute an estimate of a network-wide state, which is analyzed and 
acted upon by management applications. This paradigm of interaction between the 
management system and managed system underlies traditional management frameworks and 
protocols, including SNMP, TMN and OSI-SM [23]. 

Over the past 20 years, this paradigm has proved fairly successful, specifically for networks of 
moderate size, whose configuration rarely change and whose states evolve slowly and thus 
do not require rapid intervention by an outside system. These assumptions, however, do not 
hold for many of today‘s emerging networks. We envision that the future Internet, particularly 
with its wireless and mobile extensions, will be a system whose management domains can 
potentially include millions of network elements, whose configuration will change on a 
continuous basis, and whose state will be highly dynamic and thus must be available at 
control points with short delay. 

Within the 4WARD project, we are primarily addressing those aspects of the traditional 
management paradigm that lead to poor scaling, to inherently slow reactions to changing 
network conditions and to the need for intensive human supervision and frequent intervention. 

2.2 A Clean Slate Approach to Network Management 

Following the traditional network management paradigm outlined above, two characteristics 
are prevalent in today‘s deployed management solutions:  

 Network elements are ―dumb‖ from a management standpoint. They offer simple, 
standardized interfaces for monitoring purposes. Interfaces for configuration and 
control are generally low-level and vendor-specific. In addition, network elements have 
little autonomy in learning about their environment and in making management 
decisions.  

 Network elements interact directly with management entities outside the network. 
There is no interaction among network elements for management purposes. 
Consequently, management tasks, such as configuration or fault management are 
typically performed on a per-device bases. 

Historically, these two assumptions were made, in order to have network elements of low 
complexity, to achieve a clear separation between the managed system that provides a 
service and the management that performs configuration and supervision, as well as to allow 
for simple, hierarchical structuring of management systems.  

In the context of 4WARD, we mean by a clean slate approach to network management a 
way of envisioning and engineering management concepts and capabilities that do not rely 
upon the above assumptions but rather abandon them.  

The approach we pursue within the 4WARD project is called In-Network Management (INM). 
Its basic enabling concepts are decentralization, self-organization, embedding of functionality 
and autonomy. The idea is that management tasks or subtasks can be delegated from 
management stations outside the network to a self-organizing management plane inside the 
network. The INM approach therefore involves embedding management intelligence in the 
network, or, in other words, making the network more intelligent. The managed system can 
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now execute certain functions--local or end-to-end--on its own. It can perform, for instance, 
reconfiguration or self-healing in an autonomic manner. It reports results of its action to an 
outside management system, or it triggers exceptions if intervention from outside is needed.  

A central concept of INM is the above mentioned management plane inside the network. 
Such a plane serves as infrastructure for various kinds of management functions. It is made 
up of autonomous management entities that collectively provide management functions. It is 
self-organizing and adapts to changes in network topology, to failures and to external events. 
In order to realize the management plane, a management entity with processing and 
communication functions is associated with each network element or device, which, in addition 
to monitoring and configuring local parameters, communicates with peer entities in its 
proximity. The collection of these entities creates a thin layer of management functionality 
inside the network that can perform monitoring and control tasks end-to-end.  

Recall that that the management plane the does not replace an outside management entity 
but rather complements such an entity. In any future network, there will be a need for setting 
business objectives and policies from outside, and for possible intervention, if things go 
wrong. The goal of INM is to significantly reduce the rate of interaction between an outside 
management entity and the network, not to make the network completely autonomous—a 
proposition we find neither feasible nor desirable. 

The need for distributing management tasks has been recognized before and has been 
studied in the research community since the mid 1990s. Concepts like management by 
delegation, mobile agents, and distributed objects have been developed with the goal of 
making network management systems more efficient, better scalable and less complex (cf. 
[36]). Within the same time frame, new engineering concepts in networking and 
telecommunications, namely active networking and programmable networks have appeared, 
aimed at simplifying the introduction of new functionality into networks ([21],[22]). 

The novelty of the INM approach is that it combines and refines, in a specific way, some of the 
above concepts and moulds them into a new network management paradigm that centers 
around embedding of management functionality into the network elements, decentralization of 
management tasks, self-organization of the management infrastructure, and autonomy of 
management entities.  

The potential benefits of this paradigm that we are developing and evaluating in 4WARD 
include the following properties: 

 A high level of scalability of management systems, for instance, in terms of small 
execution times and low traffic overhead in large-scale systems. This will allow for 
effective management of large networks. 

 Fast reaction in response to local and external events. This will increase the 
adaptability of the network to various kinds of faults, configuration changes, load 
changes, etc. 
Together with embedded functions, this will lead to with a high level of robustness of 
the managed system. 

 A high business value for INM technologies through reducing capital and operational 
expenditures (cf. Section 2.4 below). 

A possible drawback of this paradigm is that processing resources for management purposes 
must be available in the network elements (or in the managed system), which will potentially 
increase cost and network complexity. The challenge is to demonstrate that the INM 
approach, on balance, can provide significant benefits over current technology.  

2.3 The Scope of Network Management in 4WARD 

It is often useful to understand the scope of network management by using the functional 
model defined by ITU-T and ISO, which partitions network management into five functional 
areas (referred to by the acronym FCAPS): Fault and Configuration Management, Accounting 
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Management & User Administration, Performance and Security Management [24]. A 
somewhat broader definition of network management can be found in [25], which says that 
―Network Management refers to the activities, methods, procedures, and tools that pertain to 
the operation, administration, maintenance and provisioning of networked systems.‖ It is clear 
that 4WARD cannot provide a comprehensive treatment of all these aspects, but must focus 
on key components that are relevant to developing and evaluating the INM paradigm.  

From the five functional areas, we have, so far, concentrated on aspects of performance and 
fault management (Chapter 4 and 5) and plan to extend our activities into specific issues in 
configuration and security management. Regarding the definition in [25], we have given 
weight to technical contributions in support of operation (Chapter 4 and 5), while, at the same 
time, developing the INM framework (Chapter 3) with the vision that it can ultimately support 
all aspects mentioned in [25].  

An area we have given attention to is real-time monitoring or, more general, situation 
awareness, for several reasons. First, monitoring, i.e., the process of acquiring state 
information from a network or networked system, is fundamental to system operation 
regarding all five functional areas. Second, monitoring functionality is generic (in contrast to, 
say, configuration), in the sense that it can directly support the management of various 
technologies, specifically those being developed within 4WARD, i.e., network virtualization, 
generic paths and network of information.  

2.4 The Business Value of In-Network-Management 

INM addresses state-of-the-art design principles and processes for the management of the 
future Internet. They facilitate to launch new services and in addition help to reduce the effort 
and costs of service and network provisioning. Since a quantitative prediction of the INM 
business value for developing new services seems speculative, we focus on describing main 
cost saving effects through INM for operational (OpEx) and capital (CapEx) expenditure. 
Driving forces of the expected savings and business support can be seen in: 

 Self-organization and automated processing, reducing the need for manual inter-
vention in current network operation; 

 Distributed monitoring and control for better situation awareness, resulting in faster and 
more precise proactive and repair processes; 

 Virtualization concepts which include management in a common framework; 

 Improved control and reporting functions for business management. 

Savings in CapEx are expected through combined situation awareness and optimization 
allowing for more efficient network resource usage. Since current preferences for over-provi-
sioned networks also contribute to wastage of energy in underutilized electronic equipment, 
optimized resource management supports CapEx saving together with a trend to green ICT. 

We give first a brief overview of the relevant categories in business value. 

2.4.1 Relevant Categories in OpEx and CapEx 

Operational and capital expenditures are interconnected issues [34]. It depends on the 
network environment whether OpEx or CapEx represents the major portion of the overall costs 
of the network and service provisioning [27][29]. Automated technologies and functions to 
facilitate management tasks may initially shift costs from OpEx to CapEx but in the long term 
will reduce the total costs as simplifying standard solutions. The level of achievable self-
organization is different in fixed backbone and access network types, in wireless, mobile, 
sensor networks or in heterogeneous networks.  

Network layers are another criterion for differentiation. Virtualization concepts, which are 
investigated in WP3, can provide a completely self-organizing environment for some task on 
top of physical network layers. Developments towards virtual concepts are already used in 
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application layer overlays, e.g. peer-to-peer networking, whose economic aspects are a main 
topic of the EU project SmoothIT, see Annex C. 

INM is focused on processes in operational networks. Therefore first installation costs in OpEx 
as well as CapEx for setting up a network, buying equipment etc. are not considered. The 
costs occurring in an operational network can be divided into the following categories related 
to main management tasks and processes [32]:  

Continuation of normal network operation: The cost to keep the network running in a 
failure free situation including space, power supply, leasing equipment, e.g. fiber rental etc.  

Maintenance and monitoring: The cost to maintain the network and to operate the network 
with awareness of failure events based on monitoring of the network and its services 

Failure handling and recovery: Failures in the network have to be repaired on a case by 
case basis triggered by alarms, if this cannot happen in routine operation. Reparation may 
lead to actual service interrupts depending on the protection scheme. 

Planning and updating of an operational network: This category includes all planning 
performed in an existing network which is up and running, resulting in long term upgrade 
processes for increasing traffic and resource demands as well as short term workarounds and 
(re-)optimization, upgrades or replacement of outdated software and hardware components. 

Service management and provisioning: Processes set up to provide and control previously 
negotiated services to customers, usually defined via service level agreements (SLA) 

Business management, marketing, pricing, sales: Business and service managers govern 
the network to support a service portfolio through a set of business decision processes. They 
use business level policies at the top level when developing new end-user services.  

INM has direct influence on the first four categories and interacts with service and business 
management through predefined interfaces and processes. Studies on the distribution of 
OpEx for network operators [29][31] attribute roughly 27% to marketing and sales, 24% to 
customer and IT support services, 22% to network elements and 27% to interconnection and 
roaming. Energy costs of the network equipment should be included in the network element 
part. Personnel or corresponding room rental costs also should include energy consumption. 
The portion for interconnection and roaming is higher for mobile and lower for fixed operators. 
Interconnection costs also differ with the size of ISPs. Large tier-1 ISPs often provide Internet 
connectivity for smaller ISPs but can profit from peering contracts with them. 

2.4.2 OpEx reduction through self-managing INM instances 

In nowadays heterogeneous networks, different domains establish their degree of embedding, 
autonomy and abstraction, depending on the technology, applications and administrative 
goals. Wherever a higher autonomy level or more flexible adaptation is achieved, expenses 
for manual intervention are reduced with consequences for OpEx [26][30]. 

Centralized management in large scale networks is often subject to uncontrolled floods of 
alarms being forwarded to the NOC in failure cases. Self-managing entities in INM are 
expected to enforce efficient local control loops which can filter and forward more consolidated 
reports instead of spontaneous data records. INM can aggregate control messages within 
entire sites and areas. It will not be necessary to have every network element connected to 
network management systems. While this can reduce overhead and facilitate failure analysis 
in large scale networks, it is a precondition for deploying small home or building networks, 
which have to work in an autonomic, OAM-free manner and otherwise have to generate failure 
reports to be understood by untrained people. 

2.4.3 CapEx reduction through situation awareness and fast adaptability  

Giving preference to a higher autonomy level, INM can also profit from ICT technology trends 
towards steadily improving performance. As a side effect of increasing bandwidth, monitoring 
and control cycles can be executed at higher frequency, resulting in immediate and more 
precise situation awareness for distributed network functions. Consequently, resource 
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optimization, load balancing and rerouting can adapt to traffic shifts and prospective failure 
scenarios in shorter response cycles, which makes them more reliable and robust.  

As an example, we consider traffic engineering on broadband access platforms, which has to 
cope with link upgrading processes for increasing Internet traffic and has to take care of failure 
situations by providing backup paths as discussed in Section 5.1.1. (G-)MPLS or Ethernet with 
multiple spanning trees are technologies that allow to establish load-balancing traffic paths. 
They can be pre-computed for modified topologies including relevant failure scenarios, but it is 
still time consuming to reconfigure the paths to circumvent a failed link in an operational 
network. Therefore additional capacity is usually provisioned to overcome non-optimized 
intermediate stages after topology changes due to failures or upgrades.  

INM functionalities for faster situation awareness and adaptability through automated online 
processes can reduce those time gaps subject to unbalanced or instable load in the network 
and, as a consequence, allow to reduce over-provisioning for such situations. Experience with 
traffic engineering in IP backbones [28] has shown that a 20%-30% increase in utilization – or 
a corresponding decrease in provisioned bandwidth of IP routers and transmission equipment 
– is possible when the network can be kept in optimized load-balanced regime by fast 
redirection of transport paths from overloaded resources. 

2.4.4 INM support for business and service management 

Business and service management relies on network management, e.g. for evaluation of the 
network status and performance over time. INM monitoring and automated reporting again 
improve the timeliness and precision of evaluated data and support SLA fulfillment etc. 

As a long-term vision, self-adaptation and autonomous management may vertically integrate 
network resource monitoring, planning, administrative policies with business and market 
strategies. For example, pricing for access and IP services may be made dependent on 
temporary bottlenecks and restricted scalability of network resources. In the opposite way, 
marketing campaigns and new pricing for web services may automatically trigger support 
actions in resource provisioning and management for prospective shifts in demand. 

2.4.5 INM in dynamic networks opening new applications and business areas 

Dynamic network environments represent a challenging area where classical management 
and routing concepts fail, making a clean slate approach indispensable. With increasing 
dynamics, routing tables or centralized network state information for management are 
becoming more and more imprecise and invalid. MANETs, sensor networks and P2P 
overlays represent three different types of dynamic networks. The IETF recently has set up a 
working group on ROuting over Low power and Lossy networks (ROLL) to study how 
far existing routing protocols can be adapted and where new methods have to be set up for 
networks with highly unreliable nodes and links.  

In addition to routing, network management has to be considered in a next step [35]. 
Therefore concepts of inherent network management are relevant to achieve fast local 
situation awareness and control, which can be evaluated and aggregated bottom-up 
into larger domains via distributed and gossip-based algorithms or reinforced learning as 
studied in Section 4.1. The scope of dynamic networks includes heterogeneous environments 
e.g. for home, building and urban networks or communication for recovery from catastrophes 
and military applications. When new concepts can be realized to manage and operate 
networks with a high level of dynamics, they should be flexible to also handle less dynamic 
scenarios and to support a centralized view of the network as far as possible.  

INM may contribute in a long term perspective to a generalized network management 
framework spanning a wide range from distributed architectures for dynamic systems to 
centralized schemes for stable topologies[32][33]. In this way, migration steps towards self-
organizing and autonomous components can be introduced bottom-up even in systems under 
central control.
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3 Framework for In-Network Management 

This chapter describes the framework for in-network management (INM) (short: INM 
framework) that supports management operations in the future Internet by the means of a 
highly distributed architecture. The main objective is the design of management functions that 
are located close to the management services, in most of the cases co-located on the same 
nodes; as target approach, they would be co-designed with the services. In this objective we 
identify the INM paradigm of embedding management capabilities in the network. The benefit 
of the resulting distributed architecture is the inherent support for self-management features, 
which promise to bring the business values discussed in Section 2.4. 

The INM framework is the first step to achieve the aforementioned objective. In line with a 
clean slate approach, the framework proposes the fundamental principles and constructs that 
state how to design and operate concrete networks according to the INM paradigm. This is the 
basis for defining the algorithms in Chapter 4 and 5 as functions distributed in networks and, 
from them, to construct management operations through self-organizing mechanisms. 

This chapter is structured as follows. Section 3.1 to 3.4 introduce the fundamental principles 
and elements of the INM framework that are the basis for designing and implementing 
embedded management processes. Section 3.5 and 3.6 describe mechanisms for the 
operation of embedded management processes with respect to a self-organizing management 
plane, including the discovery and structuring of management capabilities and information 
handling mechanisms. Section 3.7 concludes this chapter with a presentation of several 
examples that show how the INM framework is applied in concrete network scenarios. 

3.1 High-Level Architecture for In-Network Management 

The purpose of INM is to introduce cost-effective instruments to operate the future Internet. 
Before introducing the main concepts for the modular and distributed architecture of INM, it is 
necessary to understand who the main actors are and how they relate to the overall picture of 
4WARD, in particular to the business framework and business models investigated by WP1 
and WP3, respectively. For simplicity, we refer to a model comprising two roles, which will 
help to identify the main beneficiaries of INM, like illustrated in Figure 6-1: 

 Provider: entity who is responsible for and 
operates network resources (either 
physical or virtual resources). The provider 
maps to any of the business roles 
discussed in D-1.1 [2], like infrastructure 
and service provider as well as virtual 
network operator. Each will require INM to 
operate its respective resource domains. 
To the provider, INM offers a set of 
interfaces to operate those resources and 
to respect SLAs with users. 

 User: entity who requests and uses providers‘ resources as services. The user is 
regarded in a general sense and can be assumed as end-user as well as provider, 
acting as customer in the value chains considered in the scenarios of D-1.1 [2]. 

Given the legal relationships between providers and users, an SLA is used to define the type 
of service delivered to the user and the guaranteed quality in delivering it. An SLA‘s technical 
description is therefore used as input by INM to configure services. Such descriptions can take 
the form of XML documents with well-defined negotiated network performances. 

Since INM features management functions that are distributed to and embedded within the 
network elements, it is necessary to redesign management operations. The traditional FCAPS 
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model that builds on mostly separated vertical processes cannot easily be adopted to trigger 
embedded management capabilities. A new set of high-level interfaces must be introduced. 

We have considered the following 
requirements that such a set of interfaces 
must satisfy: i) need for high-level 
abstractions to define management 
commands over large-scale networks, ii) 
support for objectives of self-configuration 
algorithms, iii) feasibility to map to local 
management capabilities, and iv) feedback 
mechanism for network redeployment. 

Based on these requirements, we have 
identified three types of management points 
(shown in Figure 3.2) that define the set of 
operations accessible to INM and the actors 
by which they are accessed. A single 
management point does not necessarily 
imply that it is implemented within a single 
network node. A high degree of distribution 
can still be adopted when implementing the interfaces to model the operations defined by that 
management point. The set of management points to access INM are the following: 

 Global management point (GMP): It provides operations to define network-wide 
objectives and to construct global indicators from the network. A network operator uses 
the GMP‘s interfaces to instantiate services and to supervise the network. Differently 
from traditional management, GMPs provide objectives that are more abstract, less 
complex, and closer to business goals, and they map to distributed INM functions. 
Such abstractions are supported in the architecture through the INM entities and 
mapped to the organizational interface. 

 Service Management Point (SMP): It executes operations to activate management 
capabilities for the correct delivery of network services. The SMP‘s interfaces are not 
visible by the user, but they realize the interaction between network functions and 
embedded management capabilities. Differently from traditional management, SMPs 
enable a high degree of automation and reliability in service provisioning, because they 
resolve and activate the required management functions in a distributed manner. The 
interaction between network functions and embedded management capabilities is 
realized through the model of embedded capabilities and their following 
implementation into functional components. 

 External Management Point (EMP): It receives those operations that cannot be 
supported through embedded management capabilities, but which are needed for a 
complete management architecture. More specifically, the EMP includes i) operations 
that are out of the scope of self-management (e.g. report of physical failures) and ii) 
operations that do not perform efficiently through distributed algorithms (e.g. bulk 
information, like authorization repositories). The EMP is a useful instrument to make 
INM interoperable within the 4WARD overall architecture. For example, the report of a 
node failure can be forwarded to an interface of the Virtual Manager (WP3). Another 
example are requests of users‘ data from a repository, which can be instantiated via 
WP6‘s Network of Information (NetInf) API. 

Self-management is initiated and maintained within the cloud delimited by the management 
points (cf. Figure 6-3). The GMP provides the instruments to define services and make them 
accessible to users. Additionally, it supports an operator in the maintenance operations (e.g. 
capacity planning and network extensions, etc.), which are performed today on a periodic and 
mostly manual basis. The SMP activates the processes for correct service provisioning, like 
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monitoring and self-healing functions. This occurs in the form of local and distributed control 
loops that are composed through the discovery mechanisms explained in Section 3.5.2. 

The architecture so defined has the benefit of considerably simplifying management 
operations in the overall 4WARD architecture. This stems from the abstraction level provided 
by the GMP and by the underlying design of the distributed management capabilities. 
Additionally, the self-organization mechanisms discussed in the remainder of the document, 
imply a limited flow of feedback from the network to the operator in the form of violation of 
global objectives and aggregate metrics. 

3.2 Instruments for a Clean Slate Design of In-Network Management 

The need for basic design principles stems from the adoption of a clean slate approach within 
the 4WARD project. They are used as common ground for the design of the fundamental 
elements of this deliverable and for the successive consolidation in the next phases. 

3.2.1 INM Principles 

Following the method above, the INM framework stipulates five fundamental principles that will 
guide the design of management capabilities in the future Internet. Additionally, the INM 
framework combines technical results with a methodology for a gradual, non-disruptive, 
adoption of the novel INM functions. The first principle addresses see the basic ideas of the 
INM paradigm and captures all the potential developments of self-management features: 

 Intrinsic principle: Management is intrinsic to the network. This fundamental principle 
captures the fact that the network is the management entity at the same time. As such, 
this principle dictates all architectural considerations of the INM framework. 

The following three principles are consequences of the intrinsic principle and support the 
clean slate design of embedded management functions in the future Internet. These principles 
are extremal cases that will be relaxed in subsequent practical considerations. 

 Inherent principle: Management is an inherent part of network elements, protocols, 
and services. As such, management functions come an inseparable, i.e. co-designed, 
part of the network. For instance, in a structured peer-to-peer network, overlay 
management is implemented inherently by the peer-to-peer machinery and can be 
considered a inherent management capability of it. 

 Autonomous principle: Management is autonomous and does not involve any 
external manual intervention. This principle would leads to the adoption of a fully self-
organizing management plane, which would also automate the enforcement of high-
level business goals and physical intervention. This principle is clearly not feasible in 
its pure form, but it defines long term objectives for our research in automation of the 
future Internet: self-management functions will go beyond mere adaptation of device 
parameters and will strive towards the inclusion of domains traditionally excluded, like 
the management of business objectives (in collaboration with WP1) and the 
deployment of services through virtual resources (developed by WP3). 

 Abstraction principle: External management operations occur on the highest 
possible level of abstraction. In the theoretical extreme case, the network may be 
triggered by an external stimulus only once at the beginning of its lifetime. All 
subsequent management actions and processes are concealed and autonomous in 
the sense of the autonomous principle. This principle guides us towards the definition 
of management interfaces for operators that hide internal self-management processes 
more than today‘s approaches. 

Furthermore, the INM framework defines the following architectural principle that addresses 
the gradual architectural design methodology: 
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 Transition principle: The architectural design principles 2-4 should be implemented 
and developed in operative networks in a way that they can be gradually adopted. This 
principle is essential in that it allows gradual deployment of self-management 4WARD 
technologies and, in particular, assures marketability of INM results. 

3.2.2 INM Transitional Degrees 

While the architectural principles 2-4 are theoretic in nature, the transition principle breaks 
them down into a corresponding functional design space (shown in Figure 3-3). This principle 
supports a gradual adoption of these principles to various and practical degrees. In the centre 
of the disk, INM designates the extremal case where principles 2-4 are adopted in their pure 
form. The naming of principle 5 stems from the fact that between the intermediary steps on 
each dimension, a transition occurs to adopt a design closer to INM. 
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Figure 3-3: Transitional disk: three dimensions of the functional design space 

Along the degree of embedding, the INM framework provides scope for a relaxation of the 
inherent principle. Management processes can be implemented as external, separated, 
integrated, or inherent management capabilities of the network. Integrated is weaker in that 
instead of indistinguishable management functionality, it designates visible and modular 
management capabilities, but which are still closely related to and integrated with specific 
services. Separated management processes are those that are more decoupled from the 
service, and include, for example, weakly distributed management approaches. External 
management processes include traditional management paradigms widely used today. 

Along the degree of autonomy, the INM architecture allows for different degrees of 
autonomous management, from manual to fully autonomous processes. Manual refers to the 
direct manual manipulation of management parameters, such as manual routing 
configurations. Automated management can be typically found in the application of 
management scripts. Autonomic and autonomous degrees include intelligence that allows the 
system to govern its own behaviour in terms of network management. 

Along the degree of abstraction, different levels of management according to the 
telecommunications management network (TMN) functional hierarchy [17] can be adopted. 
This dimension leads to a reduction in the amount of external management interactions, which 
is key to the minimization of manual interaction and the sustaining of manageability of large 
networked systems. Specifically, this dimension can be understood as moving from a 
managed object paradigm to one of management by objective. 

As suggested by Figure 3-3, different parts of the network may adopt their specific degree of 
embedding, autonomy, and abstraction, based on practicability, specific goals and 
requirements. At the same time, the INM principles proactively support the transition in the 
functional dimensions in a technological aspect. If design issues are considered at the design 
time of new components, those components may encapsulate existing management 
functionality in a way that allows for a non disruptive transition to purer cases of INM. 
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3.2.3 INM Artefacts 

With close attention to the INM principles, the INM framework defines three key INM artefacts 
that provide the elements by which the INM framework is realized (cf. Figure 3-4): the 
architectural elements, the INM 
deployment environment, and the 
algorithms. The architectural elements 
(cf. Section 3.3), comprise a number 
of components which are the building 
blocks from which INM functionality is 
constructed, including management 
capabilities, functional components, 
and INM entities. The INM deployment 
environment (cf. Section 3.4) facilities 
the instantiation, deployment, and 
operation of the architectural elements 
within the self-organizing 
management plane. The algorithms 
(cf. Chapters 4 and 5), which provide, 
e.g., situation-awareness, anomaly 
detection and self-adaptation, use the 
architectural elements and their interaction to realize their solutions and then deploy within the 
INM deployment environment. All three artefacts are pivotal to enabling INM and will be 
discussed in detail in the rest of the document. 

3.3 Architectural Elements of In-Network Management 

As first artefact, the INM framework introduces five basic architectural elements: management 
capabilities, functional components, INM entities, the INM protocol, and the INM registry. The 
architectural elements are found on two levels: the communication level and the 
implementation level (cf. Figure 3-5). The motivation behind this distinction is to show how the 
design and implementation of a management process can be separated from a management 
process that is being executed within the self-organizing management plane. For both the 
design/implementation and execution of a management process, several players with 
potentially different roles are involved (cf. Section 3.1). 
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Figure 3-5: Overview of the architectural elements of in-network management 

On the communication level, INM defines the concept of INM entities, which are, in a nutshell, 
the entities visible in an operating network and between which network management tasks are 
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performed. INM entities are distinguished into two types. Self-managing entities (SEs) are the 
logical constructs which contain service and management functionality, whereas those INM 
entities that contain only supporting management functionality are referred to as dedicated 
management entities (MEs). Between INM entities, all management operations are mediated 
via the INM Protocol (INMP), which carries messages for collaboration or organization tasks to 
be performed between INM entities. Typical examples for operations carried via INMP relate 
to synchronization, coordination, or any algorithm-specific management task. 

On the implementation level, INM provides functional components (FCs), which reflect an 
implementation-specific view on INM and which are defined in analogy to INM entities. Hence, 
two types of FCs are distinguished: self-managing functional components (smFCs) and 
dedicated management functional components (dmFCs). In short, a combination of functional 
components implements an INM entity, indicated by the implement arrow in Figure 3-5. 

Management capabilities (MCs) are fine-granular elements of management functionality from 
which more complex management functions can be constructed. MCs are designed using 
object-oriented software engineering approaches. MCs apply to both the communication and 
implementation level, and the INM Registry (INMR) provides the means to translate between 
both levels. On the communication level, MCs can be addressed between INM entities in 
order to realize MC interaction, and thus, form more complex management processes. On the 
implementation level, MCs are realized by a specific implementation. By grouping 
management capabilities of one or more FCs together, MCs propagate their interfaces 
outwards such that they become visible through INM entities on the communication level. 

3.3.1 Perspectives 

The full deployment cycle of management capabilities requires different expertises and 
technical knowledge of the architectural elements; in practice, management capabilities can 
be co-designed with network functions only if the perspectives of different actors are taken in 
account. We identify three roles with a specific perspective on the INM framework: 

 The network architect is one who builds the networks and its services. He/she does 
not modify any of the architectural elements, only selects and uses them; 

 The developer is a person who wishes to design specific management functionality, 
e.g. an algorithm developer; 

 The implementer is the one who will design and develop some service complete with 
management functionality, e.g. the designer of a generic path (GP). 

Specifically, these roles are in accordance with the APC deployment framework of WP2 and 
the Vnet business models of WP3. Furthermore, the definition of these roles also supports the 
―gazelle‖ scenario envisioned by WP1 (cf. D-1.1 [2]): considering the ―virtualization‖ use case 
of D-1.1, the different roles (provider, operator, service offers, users) can be make use of 
different instruments of INM, according to their perspectives. 

Table 3-1 shows the relationship between the different roles and the architectural elements. 
This implies that the network architect must understand what the INM entity and the MCs are 
and how they should be used. The ‗network architect needs not to have a full understanding of 
the functional components and the INM Protocol. This table can guide different actors in the 
future Internet for the assignment of responsibilities and design perspectives. 

 

Architectural Element  

 Role 

Management 
Capability 

Functional 
Component 

INM 
Entity 

INM 
Protocol 

INM 
Registry 

Network Architect X  X   

Developer X   X  

Implementer X X X X X 

Table 3-1: Relationship between roles and architectural elements 
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3.3.2 Management Capabilities 

Management capabilities (MCs) are the fine-granular architectural elements implementing a 
specific function: they can be addressed and can be composed to construct complex 
management functions (e.g. performance monitoring, situation awareness). In conjunction with 
INM entities (cf. Section 3.3.4), two different interfaces are defined via which INM Entities 
publish their management capabilities: organization and collaboration interface. In order for 
MCs to support this distinction, each MC‘s published method that can be called on the MC‘s 
functionality is mapped to either one of these two interfaces. The left side of Figure 3-6 
illustrates the various forms that an MC‘s interface can take. 

management capability that offers

an interface that is accessible only

via the organization interface of

INM entities

management capability that offers

an interface that is accessible only

via the collaboration interface of

INM entities

management capability that offers

an interface that is partly accessible

via the organizationand collaboration

interface of INM entities

implementation

of a management

capability‗s

functionality

interface of a

management

capability

A management capability implements a set

of more basic management capabilities and

additionally provides its specific functionality

(using object-oriented design methodologies)

root management

capabilities

collaboration-

specific

organization-

specific
set of supported

interactions (methods)
 

Figure 3-6: Basic model of management capabilities 

The design and implementation of management capabilities follows an object-oriented design 
approach. Therefore, known object-oriented methodologies (e.g. design patterns) are directly 
applicable to MCs. The right side of Figure 3-6 illustrates the construction of a more complex 
management capability (e.g. a monitoring capability) from a set of more basic MCs. Each MC 
specifies whether each of its methods is published via the organization or collaboration 
interface of an INM entity (cf. also Section 3.3.5). 

The INM framework defines MCs in a way that they can reside at any of the degrees of 
embedding introduced in Section 3.2.2. Relative to INM entities (specifically, self-managing 
entities, SEs), hence, MCs take the following forms: 

 Inherent MCs are very closely tied to the service of an SE, meaning that they are co-
designed and implemented together with that service. They do not offer visibility to the 
management interfaces of the SE. The closest similar approach of today‘s networks is 
represented by integrated OAM functions of Ethernet standards. 

 Integrated MCs are functionally related to a specific service of a SE, but their functions 
are offered via interfaces for linking to other management operations.. 

 Separated MCs are decoupled from the service of an SE and are used for general 
management operations, like aggregation of network-wide performance indicators. 

 External MCs reside outside the scope covered by the INM paradigm and capture 
management functionality that is external to a communication network‘s elements. 

MCs should be designed such that they can potentially run at any level of embedding, 
according to the principles of Section 3.2.1. The implementation of inherent and integrated 
MCs provides an instantiation of the SMP introduced in Section 3.1 and therefore realizes the 
interaction between embedded MCs and network functions. What level of embedding an MC 
resides in is at the discretion of a developer/implementer. This also results in the potential to 
create an external library of MCs which could be queried and used by SE developers. 

Figure 3-7 provides the initial model of a management capability. An MC has a main interface 
which provides generic capability-specific methods (e.g. getInfo). This generic interface can be 
extended by a capability-specific interface; the model shows as examples performance, 
routing and configuration capabilities. These extension interfaces provide the specifics for 
each capability type. The model also shows a SpecificDeviceCapability interface extending the 
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main interface, which highlights the potential to extend the model to also address the likes of 
device capabilities and others. Each specific capability interface has its own implementation 
class (shown by the PerfCapaImpl example). For each capability, there is also a 
CapabilityAbstractDescriptor a class representing the generic description of an MC. This class 
is extended also by a specific descriptor, e.g. PerformanceDescriptor in the model. The model 
is designed to give scope to the designer but also to provide a structure which must be 
adhered to when developing management capabilities. 

 

Figure 3-7: Management capabilities UML model 

3.3.3 Functional Components 

Functional components (FCs) are the basic implementation-specific elements on a network 
node that can encompass both management and service functionality in one entity. An FC 
might represent, for instance, a protocol (sub)layer or any software module that encapsulates 
a specific service or part thereof. FCs are distinguished into the two types self-managing 
(smFC, left side of Figure 3-8) and dedicated management FC (dmFC, right side of Figure 
3-8). The distinction is motivated by the fact that certain management functionality is specific 
to a service (e.g. an smFC dealing with routing performance), while others is generic and may 
be used by several other FCs (e.g. a dmFC implementing a cross-layer neighbour table). 
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Figure 3-8: Functional components 

A self-managing functional component offers its service via the service interface (e.g. the 
sending of frames in a MAC module) and provides two additional interfaces that enable it to 
communicate with either organization-specific or collaboration-specific management peers, 
which is in analogy to the interfaces of the INM entities (cf. Section 3.3.4 and 3.3.5 for INM 
entities and their relation to SEs and FCs). The collaboration interface is for any collaboration 
between FCs in order to access one another‘s MCs so distributed management objectives can 
be achieved collaboratively. The organization interface is related to governance and other 
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high-level tasks and mediates between external (business and technical management) and 
internal (both integrated and inherent) management. 

On the right side of Figure 3-8 we show the structure of a dedicated management FC. The 
difference from smFCs is that the dmFC lacks a service and is limited to performing 
management-specific tasks only. Since a dmFC‘s management capabilities may be reused by 
several smFCs, this type of FC contains only integrated management capabilities. At this point 
we are able to identify the degree of separated management. When considering the 
management capabilities of a dmFC, they appear separated from the smFC if they are used 
by that smFC. This degree of embedding is key in providing a smooth migration of 
management functionality from external systems (e.g. management stations) closer to the 
relevant self-managing FC. Figure 3-8 includes also a view on the distinction between 
integrated and separated management in a UML style notation. In this view, integrated MCs 
(igMC) of an smFC can be considered to follow a composition relation (left side of Figure 3-8), 
whereas MCs that are separated from an smFC (abbreviated spMCs) and contained within a 
dmFC match an aggregation relation (right side of Figure 3-8). 
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Figure 3-9: Relation between functional components and management capabilities 

The relation between MCs and FCs is depicted in more detail in Figure 3-9. Independent of 
the type of FC (dmFC or smFC), the methods used to access MCs are mapped to the 
corresponding organization and collaboration interface of an FC. Considering a single 
interface, what is visible at that interface is, hence, a set of MCs with the subset of methods 
that possess the visibility of the specific interface. MCs offering methods only to one of the 
organization or collaboration interface are consequently visible only at that interface. 

3.3.4 Self-Managing Entities 

Self-managing entities (SEs) are the logical constructs that encompass the properties 
necessary to achieve autonomous operation of the network infrastructure. An SE is thus built 
around a set of principles, demonstrates a set of properties and communicates through a set 
of interfaces. Self-managing entities are organised (either through a predefined order, or via 
self-organisation) in a hierarchy according to the relationships between services.  

In INM, a ―self-management by objective‖ paradigm replaces the ―managed objects‖ paradigm 
of traditional network management. Service-related goals are received from a business 
service manager (human or software application) by the highest level of SEs and then refined 
down through the hierarchy and propagated north-south via the organisation interface. This 
interface can provide an instantiation of the GMP introduced in Section 3.1 and therefore be 
used a provider to inject objectives and SLA into the network. The collaboration interface 
enables east-west peer-wise cooperation between SEs located on the same level of the 
hierarchy. Service access points enable the delivery of services to users. 

The organisation interface includes all the protocols and operations necessary for composition 
along with capability level statements (CLS) and service level agreements (SLA) regarding the 
services provided by the SE. The collaboration interface performs the peer-wise interactions 
that were setup over the organisation interface in order to achieve the service delivery goals. 
MCs are exposed over both interfaces in direct relation with the respective functionality. 
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Principles of Self-Managing Entities 

The major principle SE entities need to adhere is the intrinsic principle detailed in Section 
3.2.1. The other principles are derived from good practices well established in software 
engineering: modularity, extendibility, interoperability. 

Modularity principle: The modularity principle states that responsibility for achieving different 
goals is delegated to different components of a system. A degree of separation is thus 
achieved based on functionality and delegated responsibility. This is an adaptation of software 
engineering principles expressed as early as 0. The modularity principle is an enabler for the 
re-use of existing SEs to produce different end-user services through multiple possibilities of 
combining basic or complex modules. 

Interoperability principle: In software engineering, interoperability is defined as the ability for 
multiple software components written in different programming languages to communicate and 
interact with one another [38]. In the context of SEs, the interoperability principle pledges 
support for key standards and broad compatibility. As a result, network equipments and 
software manufactured by different vendors will be capable of interoperating to provide basic 
(cf. also extendibility principle) self-management properties. 

Extendibility principle: The extendibility principle enables designing SEs in a manner that is 
open to changes and improvements. A hierarchy of SEs becomes thus open to provide value-
added services and enhanced functionality. Interoperability is not always necessary for these 
extended services and functions. As a result, vendors and operators can provide rich value-
added services to promote their products and protect business interests. 

Properties of Self-Managing Entities 

The properties of SEs are an important cornerstone of the INM framework allowing the 
replacement of the current ―manager-agent‖ based architecture with a more agile, widely 
distributed construction. Kephard and Chess [39] formulated a set of four aspects to be 
considered for achieving self-management in an autonomic computing scenario. We believe 
that the reorganisation and addition of new properties (when compared to the self-
management aspects of [39]) would enable a wide-scale decentralisation of network 
management functionality. The INM framework distinguishes the following properties of SEs: 
self-knowledge, self-management, self-protection, composability, auditability. 

Self-Knowledge property: Self-knowledge allows the SE to understand its identity, current 
status and state as well as its role in the system. It builds upon the following functionalities: 

 Identity and trust: Each SE has to be equipped with an identity. The uniqueness of the 
identity would result out of the wider 4WARD discussions on naming and addressing. 
The identity can be authenticated as originating from a trusted source. Exact details 
remain to be studied, but a public key-based solution along with tamper-resistant 
hardware modules in the network elements could be the basis for identity at the device 
level. In order to verify an identity, a common trust anchor must exist between the 
authenticator and SE to be authenticated. Keys could be used to verify an identity. 
However, in order to do that, some process is needed whereby a specific identity is 
tied to a specific key. A similar approach was suggested as part of the 4D architecture 
by Greenberg et al [40]. 

 Self-description: Each SE can describe its capabilities, the quality of service 
associated and all parameters associated with the interfaces it provides to other SEs. 
The self-description property allows external tools to interact with the SEs when 
composition of services is necessary. It also acts as an enabler for self-organisation of 
the SE hierarchy.  

 Self-monitoring of all internal functionality and interfaces: The SE observes 
continuously the parameters related to its objectives in order to evaluate the level of 
fulfilment. Deviations from target values are reported to the SE that uses the service. 
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On a given level of the hierarchy, distributed monitoring algorithms would need to be 
employed in order to satisfy this property. 

Self-Management property: The self-management property provides the methods for 
interacting with other SEs in a way that allows maintaining the overall state within certain 
objectives. The following categories of functionality have been identified as part of the self-
management property: 

 Self-configuration provides an SE with the ability to bootstrap itself, infer or determine 
the correct values of all the configuration parameters (perhaps with the exception of a 
minimum set of parameters related to the identity, which would need to be provided 
externally). 

 Self-diagnosing enables the SE to perform functions related to fault prediction, 
identification and correction, both at the individual level within an SE and at the system 
level in cooperation with other SEs. Distributed root cause analysis and anomaly 
detection are example of algorithms that would be needed in order to fulfil this 
functionality. 

 Self-optimisation allows the SE to take tactical decisions related to configuration 
parameters and influence the topology of relationships with the SEs assembled 
through composition and also the associations with other SEs in order to optimise the 
system as a whole. 

Composability property: In order to be able to create new services based on existing ones, 
SEs should be able to aggregate for producing composite services. SEs should have a 
standard set of interfaces and protocols so that they can be composed to produce composite 
services. The self-description, part of the self-* property and the modularity principle also 
facilitate composability. The main aspects of interest for the SEs in relation to the 
composability property are how to address aggregation and desegregation of the control loops 
associated with self-management properties of SEs placed at different levels of the hierarchy. 

Auditability property: The auditability property enables SEs to be verified on the fulfilment of 
their service as well as on their operating state. The self-monitoring property is an enabler for 
the accountability part of the auditing process. Auditability allows an authorised third-party to 
verify the values reported by the SE. Visualisation tools may use the auditability property to 
obtain values of parameters internal to the SE. This type of functionality would be particularly 
important for increasing the confidence of the operator on the routine use of network 
management techniques with high degrees of autonomy. 

3.3.5  Relations and Basic Interworking between Architectural Elements 

In Section 3.3.3 we have considered the relation between management capabilities and 
functional components. In this section we briefly cover the remaining relations between 
functional components and INM entities and how these architectural elements interwork with 
support of the INM protocol and INM registry. Figure 3-10 depicts the relation between 
functional components and INM entities and is a detailing of the relation indicated in Figure 
3-5 by the implement arrow. 

The dashed lines inside of the hybrid module (left side of Figure 3-10) and the IPv6 module 
(right side of Figure 3-10) shows exemplarily the functionality that is encompassed by a 
specific SE. In the example, the SE extracts the IPv6-specific functionality that is typically 
comprised by a TCP/IP protocol suite. Considering the single hybrid functional component, 
each of the organization and collaboration interface publishes the complete set of MCs 
supported by this FC (for ease of exposition, the capabilities are not displayed in the figure). 
The corresponding extracted SE contains, therefore, only a subset of the MCs exposed 
through the FCs‘ management interfaces. On the right side of Figure 3-10, the interfaces of 
the SE map one-to-one onto the interfaces of the corresponding FC, because the way 
services are modularized in the example corresponds to the SE. In both configurations of 
Figure 3-10, the self-managing entity is the communication-level construct that is implemented 
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by any sensible modularization in the form of FCs on the implementation level. In principle, it 
is possible to implement an SE by any combination of FCs or their parts, even from different 
nodes, as long as the properties of the SE according to Section 3.3.4 are satisfied. 
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Figure 3-10: Relation between functional components and INM entities 

Figure 3-11 shows how SEs and FCs interwork on the level of network nodes. The figure 
illustrates, in particular, the role of the INM registry (INMR) and the INM protocol (INMP). The 
figure also shows the case where a dedicated management FC and a self-managing FC make 
up an SE (the two FCs located at the bottom right of Figure 3-11). The INM registry as it is 
shown in Figure 3-11 is only a logical depiction of the functionality required to translate 
between the communication and implementation level. Furthermore, it is realized by using 
MCs, FCs, and SEs. For example, one way of providing the INM registry is to design it as a 
single MC (e.g. ―InmRegistryCapability‖), which is contained, possibly together with other 
MCs, within a single dedicated management FC that in turn realizes the dedicated 
management entity of a node. Another way of providing INM registry functionality is to embed 
its functionality in the form of one or more MCs within each of the SEs of a node, thereby 
forming an embedded and distributed INM registry. 
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Figure 3-11: Node-level view of SEs, FCs, the INM protocol and registry 

Apart from the relations discussed in this section, we will address in more detail how the 
interfaces of management capabilities are propagated up to the management interfaces of 
self-managing entities in the context of the lifecycle of INM entities in Section 3.5.1. 
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3.4 INM Deployment Environment 

The architectural elements of INM have been defined. These elements must have an 
environment to run in. One possible model of such an environment has been designed which 
supports the INM architecture. This environment must be modular, in that the most 
fundamental components or artefacts can be easily exposed and also that the more high-level 
components can be easily added and extended. Figure 3-12 shows the components which 
make up the environment. The environment has three main layers, the INM applications, the 
INM kernel and the underlying platform layer. 
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Figure 3-12: INM deployment environment 

The INM applications layer is an area where management applications can be deployed. 
These applications have the ability to interact with instances of the architectural elements and 
also with the INM kernel, once they have the correct permissions. The INM kernel is a 
privileged area within the environment where components or services are protected from 
application interference, in that access to artefacts inside of the INM kernel is restricted. 
Security measures are enforced when accessing this area of the environment. INM services 
are utilities whose primary task is to provide fundamental support for INM functionality. The 
developed INM services will be relative to the capabilities of the node itself and to the features 
which are supported by the INM runtime environment. 

The INM runtime environment is a container in which FCs and services can execute. A 
specific runtime environment can be extremely light-weight or more heavy-weight, e.g. similar 
to the Java runtime environments. The INM runtime environment is actually a concrete 
implementation of an execution environment which itself is a formal specification of an 
environment for applications and services. A runtime environment may contain a virtual 
machine (e.g. JRE and Microsoft .NET Common Language Runtime) or may contain only 
libraries (e.g. DirectX and GTK+). The INM runtime environment contains three layers or 
levels of abstraction: the INM platform, the INM framework and the INM packages. 

The INM platform contains fundamental libraries and capabilities. It provides interfaces to any 
FC and the basic communication between them and a Functional Component Abstraction 
Layer to provide technology-independent access to resources and FCs. The INM framework 
provides support for ease of implementation of INM services and applications. It will contain 
libraries, capabilities and utilities applicable to a narrower set of devices. Example functionality 
which may be supported by the framework layer: command mediation: a way to send 
commands to functional components and receive responses; event handlers: handlers which 
can process incoming events from functional components or lower level components; event 
filters: filters which can be tailored and then applied to generated events; management of 
properties: used to set functional component and service level properties. The INM packages 
will contain optional libraries, capabilities and utilities supported by specific types of devices. 
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FCs and MCs span the application and kernel layers in that they can interact and collaborate 
at any level. The INM entity is shown in this diagram just as an aid to understanding, because 
in the actual deployment environment, FCs will be the container which will be visible and the 
FC (or numerous FCs) realize the logical INM entity. 

3.5 Self-Organization of INM Processes 

The architectural elements introduced in the previous sections provide the modular 
instruments to perform management operations through a distributed approach. This section 
explains the self-organizing mechanisms to activate and compose the distributed 
management capabilities to build management processes. 

A distributed architecture requires a set of technical instruments to compose functions located 
on different locations and at different scales. The structuring of large networks has been 
mostly a non-automatic task in the past; the planning phase of networks (which includes 
defining domain substructures) is performed prior to any rollout. 

3.5.1 Lifecycle of Self-Managing Entities 

We first describe briefly the complete lifecycle of management capabilities. For that, we put 
the self-managing entity into the centre of our considerations, which contains a service and 
the corresponding management functionality. In the following, we describe the lifecycle of a 
self-managing entity along four phases: design and implementation, deployment and 
activation, operation and reconfiguration, and termination and deregistration. 

Design and Implementation 

Initially, an SE is designed with a communication-level view in mind where no reference to 
functional components is required. The modelling of MCs follows the descriptions in Section 
3.3 and part of them are to be published via the SE‘s organization or collaboration interface. 
To support self-organization, the SE should specify dependencies on two levels: 
dependencies to MCs, implicitly given by the MCs included by the SE, and dependencies to 
SEs, specified by the designed SE in order to connect to existing types of SEs for 
composition, like described previously in Section 3.3.4. 

After the design of an SE, it is implemented in the form of FCs. Focusing on the management 
part, each of the previously specified MCs needs to be provided by the implementation. This 
can be accomplished either by a concrete implementation of the MC (especially in the case of 
inherent and integrated MCs) or by the specification of a dependency to be resolved during 
the activation phase (especially in the case of separated and also integrated MCs). 

Deployment and Activation 

The deployment and activation of an SE may occur by introducing a new network element into 
an existing physical network architecture, by creating a virtual node in a virtual network and 
populating that node with service and management functionality, or, in general, by creating a 
network based on the architecture principles and concepts (APC) developed in WP2. 

The activation of an SE is performed through a plug-and-play process, where the discovery 
mechanism is used to resolve the required dependencies described in the previous phase. 
Once all discovery steps have completed successfully, the self-managing entity can be 
activated. At this time, the SE registers with the INM registry (INMR). Depending on the 
realization of the INMR, information about the activated SE may be stored in a node-local 
INMR or in several INM registries on different (physical or virtual) nodes. The final step is 
activating the SE, where the management processes start to execute. 

Operation and Reconfiguration 

After the activation of an SE is complete, it begins operating within management control cycles 
that are active within the self-organizing management plane. According to Figure 3-5 and 
Figure 3-11, the INM protocol (INMP) provides general primitives for interactions between 
MCs. At runtime, the INM deployment environment described in Section 3.4 will map the INMP 
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to remote calls between nodes or local function invocation (in conjunction with generic paths, 
developed in WP5, which provide advanced transportation services). 

In the simplest case, the SE performs management tasks that are triggered by various 
actions. For example, a service request may trigger actions in the management plane by the 
coupling between service side and management side that is defined via a subset of the SE 
management capabilities. A typical case is the reporting of an event, a mechanism described 
in more detail in Section 5.2.5. Another example is the triggering of a management function by 
invocation of the SE‘s capability from another SE‘s capability. A very typical interaction of this 
kind is a distributed real-time aggregation process that is set up between different SE‘s, 
aggregation being defined in detail in Section 4.1. Yet another example is the triggering of a 
management action via one of the management points defined in Section 3.1. In general, the 
possible ways of triggering management functions of the considered SE are manifold and 
strongly depend on the purpose and task of the specific SE, in particular, the specific set of 
management capabilities that the SE contains. 

To address mobility aspects, dynamic re-discovery and re-registration of management 
capabilities at runtime and possibly with other self-managing entities becomes necessary. This 
fact emphasizes especially the need for discovery mechanisms that are suitable for embedded 
management processes according to the INM paradigm, and which are therefore discussed in 
more detail in Section 3.5.2. Additionally, the technical challenges envisioned by certain 
scenarios, such as the scenario 2 large-scale adaptation and the scenario 4 response to 
dramatic events described in deliverable D4.1, are addressed by the self-organizing functions 
of the INM Entities, such as the (temporary) suspension and restoration MCs according to 
network conditions and service requests. Such high-level behaviour is currently being 
considered and will be elaborated in more detail in the following documents. 

Termination and Deregistration 

The last phase of self-organization of management capabilities is their termination and 
deregistration. This occurs, for instance, when a service is revoked. As a consequence, the 
associated management functions must be released in an ordered manner, in other words as 
a reverse execution of steps that occur during deployment and activation (phase 2). 
Termination can be divided into three main steps: The first step is the resolution of 
dependencies with other SEs. As a result, the SE may be either terminated or it remains 
integrated in the self-organizing management plane. Eventually, it might be possible that the 
SE, while being tied to other SEs, might be replaceable by other functionality. 

Once it is determined that the SE can be removed, its termination is initiated. For that, its 
individual MCs need to be consistently terminated. To illustrate the deactivation, consider, as 
an example, real-time monitoring (cf. Chapter 4). In this case, an aggregation tree may be 
formed between several SEs. Because aggregation will continue to function with one less SE 
(that is, one less node in the aggregation tree), the SE can be removed and the aggregation 
tree can be reconfigured according to the rules that the aggregation algorithm imposes on the 
tree. The example of aggregation illustrates the deactivation of only a single management 
capability that models aggregation. After the termination, the SE is finally deregistered from 
the INM registry. Again, depending on the realization of the INM registry, this step might imply 
actions on one or several (physical or virtual) nodes. 

3.5.2 Discovery 

As we have seen, the resolution of dependencies is essential during the various phases of the 
lifecycle of self-managing entities. For that reason, suitable discovery mechanisms that enable 
the deployment of management functions in a distributed way are indispensable for INM in the 
first place. The discovery mechanism we address consists in the discovery of management 
capabilities between functional components that can be located on the same physical node or 
different nodes. A discovery request may originate in the following situations: 
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 A service is set up and the corresponding management processes have to be started 
and configured as well (resolution of dependencies between services); 

 A management process is running and it needs to collaborate with other management 
capabilities (resolution of dependencies between management capabilities). 

The output of the discovery mechanism is a handler to one or more management capabilities 
matching the characteristics specified in the request. The implementation of a handler 
depends on the reciprocal location of the MCs and it can be mapped to a locator internal to 
the INM entity itself or to a GP endpoint. 

Since we are separating the specific mechanism to discover MCs from the description 
language to describe them, the proposal for discovery here discussed can be adopted for the 
service discovery in Vnets. In this case, the XML request specific to the Vnet description can 
be seen at the same level as description of MCs. 

Functional Issues 

While traditional approaches to network management make little use of discovery functions, a 
number of existing discovery protocols have been developed mainly for service discovery 
purposes. Typically the output of the process is the address of the service provider for the 
requested service. Such discovery methods can be mapped to MC discovery if we regard 
MCs as ―management services‖ provided by the FCs in the network. 

Hereafter, we consider several functional issues that are addressed differently in the existing 
service discovery protocols and try to extract the requirements that apply to the discovery 
needed in INM. The clean slate design gives the opportunity to build on those a more general 
and flexible discovery mechanism for management functions. 

Storage of MCs description: While centralized storage approaches assume a single server 
holding all information, distributed structured and unstructured approaches make use of 
routing-based or broadcast/multicast-based discovery mechanisms, respectively. While 
centralized storage is not appropriate for a distributed INM architecture, distributed 
approaches may be suitable depending on the type and requirements of a particular network, 
such as network size and dynamics. Unstructured approaches seem particularly promising, as 
they do not require the overhead to build and maintain structures between nodes. 

Local view and caches: When considering distributed storage approaches, a related issue is 
to define the view that each node must maintain. In some protocols, like Universal Plug-and-
Play (UPnP), nodes maintain a full view of all services in the network. In other approaches, 
like the Group-based Service Discovery (GSD) protocol, nodes locally cache a limited view of 
service descriptions available within a diameter. This approach improves scalability and 
should be therefore taken into account in INM. 

Description language: Many of the existing languages follow an attribute-value structure and 
can be mapped through XML encoding. We believe that for our purposes the description 
language is not a decisive factor, although it is needed to enable search mechanisms. An 
object oriented approach with value/parameter sets and encoded as XML is adopted. 

Search method: search methods operate in close dependency with the type of storage used 
for discoverable information. Depending on how much structure is provided by the storage 
approach, search is conversely more efficient. Therefore, distributed structured approaches 
best support search efficiency by enabling routing-based querying. Moreover, both push and 
pull approaches are conceivable, where management capabilities are either proactively 
announced or reactively discovered. As in the case of storage, a suitable trade-off between 
searching methods depends on the characteristics of the considered network. 

Matching rules: a diversity of matching schemes may be used to define when a discovery is 
successful, including attribute-value pair matching or wild-card matching. When more than one 
match occurs, additional algorithms are required to select and terminate a discovery process. 
The choice of matching rules and selection rules mostly depends on the requirements of the 
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querying entity. While a specific MC may be discovery by the first perfect match encountered, 
wild-card matching could be helpful when human intervention is needed. 

Maintenance: When a service description changes, consistency may be maintained either by 
sending an advertisement with the new description or sending an event (publish/subscribe). 
Considering that dependencies and collaboration in INM are established between MCs, the 
publish/subscribe model seems to be suitable to send updates of the service descriptions to 
MCs that are interested in that. Two methods can be used to keep a consistent view of the 
available services: in a soft state model, services periodically send updates to confirm their 
availability; in a hard state model, records do not expire and need to be explicitly deleted when 
unavailable. For INM, hard state may be more appropriate due to rather stable records, as 
management functions are often performed in correspondence with a service.  

Approach for a Discovery Solution for INM 

While existing discovery protocols provides functionalities that can be reused for the discovery 
of management capabilities, they do not address the following issues: 

 No mechanism for inter-domain discovery is provided. Existing protocols are designed 
to work within a domain or within a network with specific characteristics. This fact is an 
obstacle for the deployment of existing protocols to the INM architecture. 

 No protocol can be mapped to different transport layers: a protocol can discover 
services that are provided by a specific layer but cannot address cross-layer aspects. 

Moreover, scalability, robustness, and timeliness are essential requirements for discovery 
applied within the scope INM. An effective way to provide this set of requirements is to limit 
the scope inside of which discovery takes place, e.g., by imposing a diameter or domains 
within which searches are concealed. This approach may significantly reduce the cost of 
discovery and in turn allow for more redundancy and concurrency of discovery mechanisms. 
As a result, more robust and timely discovery becomes possible by relying, for example, on 
backup and parallel execution of discovery instances in situations where one mechanism 
might fail or require a performance boost with respect to timeliness. 

Domains, in particular, provide a powerful way to group nodes with similar characteristics, e.g. 
their degree of mobility. Within a domain, a discovery protocol can then be chosen according 
to these characteristics and even adapted dynamically when the characteristics change. In 
order to interconnect domains in terms of discovery, strategic nodes would be in charge of 
translating discovery requests between different domains, for example, from the home 
network to the wide area network. Because networks may be designed and deployed by 
individual network architects, discovery mechanisms in several domains will likely differ, e.g. in 
the storage system or in the search method. A query that cannot be resolved in one domain 
could be forwarded to the other domain by the strategic node, which analyzes the query and 
convert it according to the format and requirements of the new domain. 

In the INM architecture FCs are grouped into self-managing entities (SEs), which represent a 
higher level of abstraction for organizing FCs according to their properties and functions. 
Discovery mechanism could operate between SEs through the SE‘s collaboration interface 
whenever the management process needs to locate management capabilities that are 
contained in another SE. The communication protocol designed to exchange messages 
between SEs could include a discovery type of message; moreover, a discovery message 
could be used both to search for a management capability and also for another SE. One of the 
properties of a strategic node would be being able of bridging discovery messages between 
different domains. This could be a property of a particular SE, like an inter-domain SE. 

Given that different discovery mechanisms can coexist in the network, it would be desirable to 
define a common interface or a set of discovery primitives, which could be extended in a more 
specific way by each discovery protocol; at the same time, this would simplify the translation of 
discovery messages between domains performed by strategic nodes. 
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3.5.3 Structures for INM 

The design elements discussed in the previous sections build a highly distributed architecture, 
where MCs can be discovered and executed on a peer to peer basis. Network Management 
exercises control over a network and has tight relationships with the structure(s) of the 
network. The classical structure is to manage groups of devices using an element manager, 
while several of these are controlled by a domain manager, and on top of everything, the 
actual network management. The state of the art is represented by larger, umbrella-like NM 
systems that cover several smaller NM systems. NM is used to create or modify network 
structures, and mostly this involves human operators to perform the separation of node sets. 

The construction of a structure among INM entities can be triggered by different requirements 
and an analysis of the scenarios in D-4.1 produced a list of such requirements. Analogous 
concepts are adopted in 4WARD, such as the GP compartments [5]; with this respect, the INM 
structures can be certainly mapped one to one to those concepts, but the structures can be 
enforced in a more loose way, allowing for example the establishment of inter-domain or inter-
compartment optimizations. The criteria for structuring are the following: 

 Physical possession (ownership) of subsets of nodes by different shareholders. This 
needs to be reflected and partially enforced by means of network management. 

 There may be limiting factors to some INM algorithms that forbid their use beyond a 
certain number of nodes, or hops or geographical distance. This range can be 
interpreted as a structure, and, if this structure is fortified (i.e. if the network becomes 
aware of it e.g. by using it regularly), it becomes a network domain eventually. 

 Some network management operations shall have limited scope as they are valid only 
for e.g. certain regions, access technologies, handsets or home networks. 

 Topology (geographical or physical connectivity). 

 Administrative issues, e.g. different priorities for different parts of an operator network 

 Performance (e.g. the ―location areas‖ in 3G). 

 Service specific requirements. 

 Virtual networks (Vnets, WP3) can be treated as individual domains. 

 Compartments according to WP5 can be mapped into an INM structure. 

Structures can separate, for example, routing areas from each other; they implement the 
„Intranet― vs. „Internet― dissection, they can be based on different protocol usage (e.g. IPv4 vs. 
IPv6 addresses), VPN of any kind, the 5 types of NAT, access operator specific networks and 
realms and also they may represent and establish business models as defined by economic 
factors such as pricing. Security boundaries play a special role because for this type of 
separation the reliability of the enforcement of the separation of sets of nodes is the priority.  

Means for Structuring 

Structures may be of static or dynamic nature. Logical hierarchy is seen as a necessity, but it 
shall have more flexibility compared to today‘s situation, where hierarchies are often static 
throughout entire lifecycles of networks. A first step has been to identify how the potentially 
extremely large set of nodes can be separated into smaller sets at all, adhering to the INM 
paradigm. This is one feature of the self-organizing behaviour of the INM entities, in addition 
to the others, better known ―self-x‖ features; this is evident for example in Section 5.2.1. 

Structures can be seen as relationships between nodes, groups of nodes and boundaries 
between the groups, as known from the theory of sets. The structures may be established for 
certain contexts: one may be used to formally separate operators from one another, and 
others may be temporary groups of nodes that are created to deal with certain load conditions 
for a limited amount of time, or for troubleshooting. The basic idea of collaborating groups is 
also described in Section 4.5. The main idea is to establish the groups by a topology 
discovery process and then let the members of the collaboration group detect any internal 
anomalies. 
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Considering the different requirements presented above, we can distinguish between two 
types of initiation: outside-in or inside-out. The outside-in initiation is adopted for structures 
derived from operator‘s objective, and can therefore be configured through the GMP point. 
The inside-out initiation is adopted for management operations coupled with the network 
functions and it creates structures between cooperating neighbouring nodes which group 
themselves subsequently into larger conglomerates. The co-existence of the two methods 
enables scalability and guarantees a high level of flexibility in the aggregation of management 
operations. See Figure 3-13 for the basic idea. 

 
Figure 3-13: Emergence of structure by using outside-in and inside-out self-structuring 

processes of an INM-enabled network (left: preparation signalling; right: established domains) 

Technical means for creating boundaries for NM include: 

 Gossip-based algorithms, like those presented in Chapter 4, can be adopted in 
networks with no configuration retrieved from the operator or services; 

 Algorithmic creation of structures without or with limited central control can be 
performed using self-organizing algorithms; 

 Graph-colouring and/or cellular automata taken from computer science fields; 

 Algorithms for finding a master node within a set of nodes are very well known (such 
as letting every node create a random number, and the highest one wins); 

 An extension of this is the automatic creation of sub-sets of nodes, according to certain 
criteria, for example the node with the highest ID selects a pre-defined number of 
neighbours, and the voting starts again in the remaining set of nodes (not including the 
first created domain, i.e. the first master and its neighbour nodes). The master role 
may change more or less frequently over time. 

A structure, initiated by one of the two methods described above, can be enforced into the 
management capabilities at different levels, either as information elements encoded in the 
network nodes or as soft-state information, like a ―scope‖ for specific management functions. 
Both implementations have pros and cons, and the INM architecture can adopt both for better 
performances. From the analysis of the requirements, it is proposed to map the outside-in 
initiated structures into information elements inside the INM kernel. They can then be used 
from the management capabilities as constraints to define more dynamic structures, creating 
temporary scopes for specific management operations. 

The INM node architecture should reflect such structures, ensuring that any node‗s INM kernel 
and/or INM application space can be made aware of belonging to certain domains, or taking 
an active role in the implementation or maintenance of a certain boundary between domains. 
We propose to define a dedicated management FC (dmFC) that takes care of the awareness 
of any node or SE (ME) for belonging to any groups or larger scale domains, i.e. managing 
membership and triggering of structuring processes according to certain predefined goals. It 
has to be analyzed whether the INM registry can also be used to implement such functionality, 
i.e. awareness of nodes/SE themselves as well as groups, domains and overall structures. 
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3.6 Information Management and Interworking with NetInf (WP6) 

Experience from previous architectures [41] and [42] shows that several aspects related to 
information handling are important for quantitative aspects, like timeliness and memory 
consumption, as well as qualitative aspects, like ease to define objectives in the network and 
usability of management instruments. The analysis work of deliverable D4.1 provides 
examples of such technical issues. Scenario 1: given the limited computation capabilities of 
the sensors, which dissemination mechanism performs best for configuration and 
measurements? Scenario 2: how to abstract and map at different levels the information to 
control large scale networks? To address the variety of these aspects, we adopt a similar 
approach as in [43] and we discern the design aspects pertaining to information handling with 
the design aspects pertaining to functions. 

This section addresses network management information storage and retrieval in 
decentralized settings. We consider decentralization of both the information storage as well as 
the management functionality itself. Both work in a very centralized and hierarchical way 
traditionally in large telecommunication systems, in line with the well-known pyramid-structure 
(defined by the TM Forum [69]), where network elements (NE) are handled by element 
managers (EM), which are in turn controlled by a network manager (NM), and even higher 
layers for service (SM) and business management (BM).  

In most types of networks, the management information source can be any network element. 
Therefore, a decentralized storage might adapt better to the decentralized nature of the 
information, especially if the information is needed locally only. For all other cases, the pros 
and cons have to be elaborated and benchmarked with centralized designs.  

The expected improvement is storage of INM data, information and potentially state in a way 
that has benefits in reliability, access speed, and query-like search options. We want to benefit 
from those properties for NM. 

The Path to Decentralized, In-Network Management and Related Work 

Traditionally, the NM is logically and also location-wise fairly centralized, and, correspondingly, 
any management related information is retrieved from the network through some management 
protocols and typically stored in a central database. Also the NM system is in charge of 
retrieving the information from the network, processing it and storing it in the database. 
Another characteristic is the hierarchy in traditional NM; every network element (NE) has a 
relationship with an element manager (EM), which in turn is connected to the overall, topmost 
NM system. The first set of enhancement had been the decoupling of the NM functionality 
from the retrieval and setting processes. Most prominent work has been done by J. Strassner 
[10] in the context of Directory-enabled Networking (DEN-ng). Still, the storage is central, but 
accessible remotely from any NM application, typically through LDAP or any other protocols. 

On the other hand, the way towards decentralized management has been paved through 
various work on Management by Delegation [12], the IETF Script MIB [13], and patterns for 
decentralized management [11] increasing the degree of decentralization. 

Madeira [9] suggests using the ―P2P principles‖ for distributed NM and follow a model-driven 
approach. However, they do not provide details on storage procedures. Also the class of end-
system based P2P management paradigms have been worked on [15], but they don‘t couple 
this with network wide systems. 

The in-network management paradigm can be interpreted as pushing management 
intelligence into the network, and, as a consequence, making the network more intelligent: as 
a consequence, objectives and costs of management operations can be adapted according to 
local working conditions. Glued together with a set of discovery and self-organizing algorithms, 
the network elements form a thin ―management plane‖ embedded in the network itself. 

While it is too early for specification of data types for INM storage, the potential data to be 
made available to other SE/ME (also related or depending on their domain membership) 
includes: (i) Measurements, specifically accumulated lower layer measurements of interest to 
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other nodes; (ii) Measurements / results (aggregations) that have been created by gossip 
protocols and may be of interest later, or to other nodes (heuristic storage, to avoid new or too 
frequent measurements); (iii) Data about domains/structures / network data base; (iv) Context 
information with more or less tight timing constraints; (v) Storage of MCs description (cf. 
Section 3.5.2 on functional issues; (vi) Service specific data. 

3.6.1 Data Storage through NetInf 

Here we consider WP6‘s Network of Information (NetInf) approach to information storage and 
handling, which are based on separating content and locator information and applying one or 
multiple indirection steps, resulting in the ability to store and retrieve information objects in a 
more generic way. NetInf is foreseen to provide a storage middleware allowing to store 
information elements in a decentralized way and provide search and retrieval capabilities. It 
can be seen as a generalization of various systems in the P2P, CDN, and file sharing space. 
Since this particular system is under design at the moment, we focus on the requirements and 
challenges are for storing and retrieving NM information with it.  

Network of Information Background 

The overall objective for a NetInf [8] is to design a general, information-centric network 
architecture for information retrieval and storage. It is concerned with the information objects 
themselves rather than the nodes that host them. Information objects are directly addressed, 
without any knowledge of what node they are actually hosted. The main components of a 
NetInf are a modelling framework that facilitates object discovery, lexical retrieval and syntax 
and semantics of object operations. The architecture is based on two boundaries, a lower API 
towards the network infrastructure, such as IP, and an upper level API, which is meant to be 
used by future applications. In our case, we assume that the management functionality uses 
the upper API for the storage as well as the retrieval of management information.  
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Figure 3-14: Network of Information according to WP6 overview 

Most peer-to-peer systems are only used for simple non-wild carded searching of information 
rather than storing the information itself. Also many do depend on distributed hash tables 
(DHT) in their core. However, that depends on the specific application it is used for. The NetInf 
system is foreseen to provide a larger breadth of functionality including decentralized storage, 
but also search and retrieval functionality. We assume the decentralized storage system being 
a high-level concept, currently under design. It has the capability to put information into and to 
retrieve information from the system.  

Typically, NetInf systems are not targeted to NM information handling but rather to end user 
content such as multimedia. Many of the search and retrieval mechanisms in NetInf systems 
are built for that specific purpose, and adaptations might be needed on both sides, i.e. on INM 
side as well as on NetInf side, in order to exploit the concept. Adaptations on INM side include 
re-formulation of NM information flows and procedures, while on NetInf side, certain 
requirements such as fast access times may be important. 
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3.6.2 Data Storage through Situation Awareness Framework 

The situation awareness framework offers another possibility to store and offer data for INM 
purposes. The whole framework is described in more detail at Section 4.3. The basic idea of 
this approach is a decentralized directory that is aware about the location of all offered INM 
data. Each entity, INM application or any component that offers INM information registers itself 
to the directory indicating the sort and location of the information offered. Vice-versa, each 
entity, application or component is able to retrieve needed INM data by sending a resolve to 
the directory which replies with the correspondent location of the requested information. Using 
the location information, INM data can be requested directly P2P afterwards, which can be 
requested either by a get or subscribe. In the former case the INM data will be sent just once, 
in the latter one it will be sent continuously every time new data is available. 

As the name already states the main purpose of the Situation Awareness Framework is 
offering situation information that helps to establish situation awareness. On the one hand, 
such information can be either low level information such as BER, link quality or level of 
congestion. On the other hand information can be also offered as aggregated or interpreted, 
e.g. anomalies or group decision. This way it would be also possible to offer NetInf information 
via the situation awareness framework. NetInf data would just need to get registered at the 
directory to be available to every component that wants to retrieve such data. 

3.7 Use Cases for the In-Network Management Framework 

The objective of this section is to provide concrete examples of how the INM framework can 
be applied. Section 3.7.1 shows how two management algorithms, topology discovery and 
anomaly detection, are placed in the context of the framework. Section 3.7.2 presents several 
example instantiations of INM, specifically, an example of a QoS functional component. 

3.7.1 Implementation Example of Algorithms in the Framework 

In this example, we describe the design and implementation considerations of two algorithms, 
topology discovery and anomaly detection, as well as the collaboration between the two in the 
context of the framework. 

Topology discovery is an essential management capability (MC) for self-management, which 
is capable of enabling a host of other MCs. An inherent feature of self-management is that 
management tasks are taken care of locally and autonomously by the network nodes (the self-
managing entities - SEs), which also implies a distributed effort. 

Every network node is part of one or more local collaboration groups, with which it collectively 
implement some other MC. Upon bootstrapping, every SE initiates a process that discovers its 
neighbours, for the purpose of creating a collaboration group, or joining with an existing one. 
An SE can be part of multiple collaboration groups, implementing different MCs. Members of 
the collaboration groups can be selected based on certain criteria, such as nodes that provide 
services to other nodes, or based on the class of the nodes or how far they are from each 
other with respect to some topological distance. Mechanisms for adding/removing members 
from the collaboration groups should be supported, as well as discovery, member negotiation, 
and collaboration with other collaboration groups. 

Anomaly detection, besides its importance for autonomous health management in network 
elements, also can be used for resource management. This means that the detection of 
anomalous behaviour on a link or a node can trigger self-managing mechanisms, such as re-
configuration. For these purposes, an anomaly detection MC can be used by different 
functional components (FCs) and, if necessary, collaborate with other MCs. 

In our example, an anomaly detection MC offers the capability of detecting and reporting faults 
on link or node level in the network. The algorithm implemented by the MC operates in a 
distributed manner in individual network elements, and collaborates with other network 
elements that implement the anomaly detection MC. The anomaly detection algorithm actively 
sends probes for both monitoring of neighbouring nodes and for classification of detected 
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anomalies, which is done by requesting assistance from neighbours of the detected 
anomalous node. For these purposes, the anomaly detection algorithm needs network 
topology information which can be obtained by topology discovery algorithms. In terms of the 
INM framework, the anomaly detection MC must be able to communicate with the topology 
discovery MC in order to form collaboration groups of neighbouring nodes within the 
topological distance of two. 

Design Considerations 

Due to the distributed nature of INM, every network element makes use of topology discovery. 
Since it is a generic MC, an inherent degree of embedding is surely excluded. The topology 
discovery MC can be operating in two different setups: 

1. Every network element has at least one FC that includes the topology discovery MC. 
Through the discovery and negotiation process, one of the FCs is taking a lead role in 
forming the collaboration group (i.e. the manager of the collaboration group). For a 
multitude of reasons, the manager of the collaboration group can be changed (namely, 
moved to another network element). In this setup, the topology discovery MC is 
attached to a self-managing FC (smFC) or a dedicated management FC (dmFC), 
using either the integrated or the separated degree of embedding, respectively. 

2. In every network segment, there will be one or more designated network element with 
an FC that manages the collaboration groups. Those FCs will be the only FCs in every 
network element in the segment that include the topology discovery MC, most likely, as 
a dmFC, under the separated degree of embedding. Note that such dmFC can, but not 
necessarily do, implement other MCs. All other network elements in such a network 
segment have FCs that are equipped with one or more atomic or primitive MCs that 
allow them to participate in the group formation process. 

Both setups are possible. The first setup is more flexible, as every network element has an FC 
that can become the manager of the grouping process. However, that means that the topology 
discovery MC is attached to at least one FC in every network element. The decision which 
setup to implement is a design issue. 

The topology discovery capability can be implemented by a few MCs. The number of MCs is 
considered a design decision. One could separate the discovery capability from the formation 
of the collaboration groups, and possibly attach them to different FCs. 

The anomaly detection capability can be implemented by three or four MCs. Essentially, 
network elements that will perform anomaly detection need an FC that implements an 
anomaly detection MC. The FC that hosts the anomaly detection MC communicates (through 
the collaboration interface) with members of the collaboration group of network elements 
formed by the topology discovery MC. Apart from collaborating with the topology discovery 
MC, for the purpose of exchanging topology information, the anomaly detection MC needs (for 
monitoring purposes) to communicate with another FC and/or MC that can provide indicative 
information that relates to the health of other members in the group (in this case used for 
probing of nodes). This communication can be done either through the collaboration interface 
of an FC that contains an MC that implements probing functionality, or directly with an MC 
through accessible probing functions. In addition, the anomaly detection MC needs to 
implement functions used for notifying collaborating network elements about the status of 
neighbouring network elements, and for confirmation of failures on request. Such methods are 
made accessible via the collaboration interface of the FC that hosts the anomaly detection 
MC. Further, configuration parameters of the anomaly detection MC can be set via the 
organization interface of the FC. The anomaly detection MC also requires means to report 
faults. This can be done by making report functions implemented either in the anomaly 
detection MC itself or in another MC that the anomaly detection MC collaborates with. 
Depending on the design, the anomaly detection MC could be included under the integrated 
degree of embedding in an smFC, in order to make the implemented report function public 
and accessible via the service interface (provided by the smFC). On the other hand, the 
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anomaly detection MC could also be included in a dmFC under the separated degree of 
embedding. In that case, the anomaly detection MC communicates through the collaboration 
interface (provided by the dmFC) with other FCs (smFCs) that provide interfaces for user 
services, and that contain an MC that implement reporting functionality. 

The FCs and MCs described can either implement a single SE used for the purpose of 
anomaly detection only, or be included as part of an existing SE designed for e.g. in-network 
monitoring. The approach to take is a design choice made by the developer of the SE. 

Implementation Example 

In the implementation example that we show below, both topology discovery and anomaly 
detection is included in both types of FCs (i.e. smFCs and dmFCs). Further, the topology 
discovery MC is included in the FCs following the first setup described above. Figure 3-15 
demonstrates the described arrangement of this example. In the figure, each network element 
within the collaboration group is represented only by the FC that implements anomaly 
detection (AD) and topology discovery (TD). The TD MC (shown as the larger bubbles on the 
right inside each one of the FCs) communicate with other nodes in the area, negotiating a TD 
manager, and eventually forming an AD collaboration group. Such communication is shown by 
the lower lines. The AD MC (the larger bubbles on the left included in the same FC), 
communicates with other members of the AD collaboration group (shown by the upper lines). 

 
Figure 3-15: Example of topology discovery and anomaly detection in the framework 

3.7.2 Example of INM Framework Instantiation 

The framework instantiations presented in this section are the first feasibility study to verify the 
adoption of the INM framework in practical use cases. They are based on Figure 3-16, 
showing the instantiation of the framework into management capabilities distributed across 
different nodes. 

Interactions with Service Components 

Instantiations of the framework are discussed with an example related to a dedicated 
management functional component (dmFC), such as quality of service (QoS). We use the 
following distinction to emphasize the role of dmFCs: 

 Self-managing functional components (smFCs): NetInf, GP, Vnet; 

 Mandatory dmFCs (for any node) : QoS module, routing module; 

 Optional dmFCs (for strategic nodes only): resource control module, security module, 
neighbour discovery module, etc. Note that a strategic node is usually located in a 
mediation point and it includes more dmFCs than the mandatory QoS and routing. 
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These functional components communicate through several interfaces: smFCs through 
service interfaces, whilst dmFCs use the collaboration and organization interfaces. However 
there is also an interaction between smFCs and dmFCs inside the INM kernel, but also inside 
INM applications. Users may have access to smFCs and providers could interact with dmFCs 
(SLA-based). There are GPs between nodes and dedicated GPs for inter-management. 

The management capabilities included in the functional components (driven by one or several 
processors, depending on INM kernel implementation) are listed in Table 3-2. 

Management capabilities Interface Beneficiaries 

Physical resources access  service framework to perform inter-process communication 
(IPC). INM will permit/ deny access to hardware.  

Physical resources access  collaboration QoS module to perform(technology dependent) 
measurements between nodes within the defined 
scope (intra-domain, inter-domain) through hardware.  

Cross-layering for 
committed QoS parameters 

collaboration QoS module to impose a transfer rate to the hardware 
through INM platform and hardware driver 

Cross-layering for QoS 
parameters 

collaboration QoS module to collect BER, BER time distribution, 
nominal transfer rate, etc. from hardware driver 
through INM platform 

Cross-layering for data  service Self-managing functional components may exchange 
information to/from hardware driver through INM 
platform. This is crucial in case of emergency. 

Real-time composite metric 
calculation 

collaboration QoS module to provide the composite metric for other 
INM modules only (routing, resource control, security, 
etc.) 

Real-time composite metric 
calculation 

service QoS module to provide the QoS service requested by 
framework (self-managing FC like NetInf, Vnet, GP) 

Routing for management  collaboration Routing module to offer services to resource control 
module (optimal routing, policies); neighbour discovery 
module; security module  

Routing for management  collaboration other modules from other nodes; ForMux to establish 
dedicated GPs for management (BER less than a 
threshold, best coding schemes, swarm-like with 
multicast services, multipoint-to-multipoint)  

Routing at node level  service  framework (dmFCs like NetInf, Vnet, GP) to perform 
virtual routing 

Routing at node level  service  framework in case of emergency (DEFCON [1])  

Resource planning  service ForMux to perform GP management; Vnet to perform 
Vnet management; NetInf to perform NetInf 
management 

Resource Planning  service infrastructure providers (via Vnet), operators (via Vnet)  

Table 3-2 Examples of management capabilities 

Example of Dedicated Management FC: QoS 

The network of the future is believed to be a network with converged services. The same 
network will provide access to data, voice or high quality video content to the end users. 
Because not all the data flows require the same traffic parameters, we have to classify them 
according to the transported information type and treat them differently. All these operations 
are made in order to maintain a specific quality of the service, provided by the operator to the 
end user and specified in the SLA between those two entities. Because a usual traffic flow 
crosses different communication domains, each one with its own rules, it is still a challenge to 
guarantee end-to-end QoS services on a communication channel, because each domain can 
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implement different QoS mechanisms that are not always compatible, or worse, are not 
offering QoS at all. The reason that many network administrators choose not to enable QoS 
functions in their network is that they are difficult to configure properly, requiring a thorough 
understanding of the mechanisms behind. We consider that QoS is an important management 
functionality that should be supported by the framework developed in 4WARD. 

The architecture of each network node should contain a quality of service dedicated 
management FC (QoS dmFC), that handles all functions related to guarantying a specific 
quality of services, offered to the users. The QoS dmFC will have 2 interfaces: service and 
collaboration, and it will implement three groups of management capabilities (cf. Table 3-2): 
accessing the physical resources, cross-layering for QoS parameters and/or data, composite 
metric calculation. The first MC implemented by this module will enable QoS dmFCs to 
perform measurements between nodes within the defined scope (intra-domain, inter-domain), 
accessing the hardware directly, through the collaboration interface. The idea of second MC, 
cross-layering, refers to the optimization of a protocol in one layer, due to changes in the 
quality of the service of other layers. This capability will be implemented using 2 approaches: 

 Bottom-up approach: will enable collecting traffic parameters like: BER, BER time 
distribution, nominal transfer rate that are characterizing a specific physical link and are an 
objective way of evaluating a communication channel. The results could be obtained 
directly from the hardware driver where the technology will permit, or using different 
dedicated tools that will perform passive or active measurements between nodes. The 
information regarding the performed measurements will be exchanged between the QoS 
dmFC and the hardware through the collaboration interface. 

 
Figure 3-16: Example of exchanged messages between functional components (cf. Annex A) 
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 Top-down approach: will impose a specific transfer rate to the hardware through INM 
platform and hardware driver. The traffic parameters will be received from different 
applications (e.g. GP) through the service interface and send directly to the hardware, 
using the collaboration interface.  

 

 
Figure 3-17: Node instantiations: details regarding QoS module 

 

 

Figure 3-18: QoS dmFC 

 

The third management capability in the QoS module is composite metric calculation. The 
metric will be calculated using the traffic parameters, received from hardware or measured 
using dedicated sub-modules and provided as a service to the routing module (dmFC) or other 
service functional components like NetInf, Vnet or ForMux if requested. As a final step, the 
global information obtained for management purposes (not for operational tasks) will be 
published into NetInf through the service interface, so that every network entity to be able to 
acquire the metric that characterizes a certain physical link. Because the performance of a 
communication channel varies in time, the QoS dmFC will constantly perform measurements 
and recalculate the composite metric, updating its value.  

Considering that the future network should be able to manage itself with minimum intervention 
from an administrator or a governor, while maintaining good performance, the QoS dmFC 
should be characterized by the next set of properties: self-descriptive, self-configuration, self-
optimization, composability, governance, interoperability and extendibility.  
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4 Distributed Algorithms for Real-time Monitoring, Anomaly 
Detection and Situation Awareness 

Monitoring, anomaly detection, and the creation of situation awareness are crucial functions of 
the INM management plane, as they support other management tasks, including fault, 
configuration, accounting, performance, and security management. Since the INM paradigm 
aims at providing effective management for large-scale, dynamic network environments, these 
functions must operate in (near) real-time. 

In a dynamic environment, a network must continuously adapt its configuration, in order to 
maintain its state near a desired operating point, despite perturbations caused by load 
changes, failures, etc. To achieve this, a set of algorithms is needed for estimating the 
network state with the needed accuracy. Specifically, the required functionality includes: 

1. Monitoring of network-wide aggregates in real-time. Aggregates contain information 
about the network state, such as the current number of VoIP flows in a network domain 
or the current bandwidth consumption by different types of applications. 

2. Probabilistic anomaly detection. In an autonomous setting, it is important to devise 
distributed and localized approaches to fault detection and localization. 

3. Real-time resource and traffic monitoring in support of routing, specifically resource 
discovery, estimation of available resources (quantity and quality) and resource 
consumption. 

4. Situation awareness, e.g., the process of extracting and evaluating raw sensor data 
and monitored aggregates, to drive to the decision making processes in the 
management plane. 

The algorithms provide the necessary input to the management plane to perform self-
adaptation tasks that are further discussed in Chapter 5, as well as to control algorithms 
developed in other WP‘s of the project. For instance, the algorithms for real-time monitoring 
for routing (Section 4.2) can provide input to WP5 for the configuration of generic paths. 

The present chapter reports on progress in the above four areas. Specifically: 

 In the area of distributed monitoring, several algorithms have been developed that 
examine different types of aggregates including threshold crossing indicators and 
histograms. These algorithms have been evaluated and compared using analytical and 
experimental techniques to assess performance, overhead and robustness. 

 We have developed a method for collaborative and distributive identification of network 
anomalies, as well as faulty nodes and links, using end-to-end test transactions or 
probes. As we cannot rely on manual configuration of parameters, the algorithm 
autonomously adapts to network properties. 

 We report on a preliminary study on resource and traffic monitoring for routing in the 
Future Internet. 

 We outline a model for situation awareness that allows algorithms for distributed 
monitoring and anomaly detection to be embedded.  

4.1 Tree-based vs. Gossip-based Algorithms for Monitoring Aggregates 

Monitoring, i.e., the process of acquiring state information from a network or networked 
system, is fundamental to system operation. In traditional network and systems management, 
monitoring is performed on a per-device basis, whereby a monitoring station periodically polls 
devices for the values of local variables, such as device counters or performance metrics. 
These variables are then processed on the management station to compute an estimate of a 
network-wide state, which is analyzed and acted upon by other management programs. 
SNMP is probably the best-known protocol that supports this monitoring paradigm.  

Over the past 20 years, this paradigm has proved fairly successful for networks of moderate 
size, whose configuration rarely change and whose states evolve slowly and thus do not 
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require intervention within seconds by an outside system. These assumptions, however, do 
not hold for the networks of today, and neither will they hold for the Future Internet. In the 
following, we outline our thoughts on a monitoring system for networks that are very large, 
whose configuration changes frequently, and whose state is highly dynamic and thus must be 
available at control points with short delay. 

To ensure scalability and fast reaction times, the processing associated with monitoring 
should be carried out inside the network. We thus advocate research towards a light-weight, 
distributed management layer inside the network that offers end-to-end monitoring primitives 
to management applications and end systems outside the network.  

Aggregates contain information about the state of an entire system, as opposed to that of a 
single device, and many management applications depend on such data. For the purpose of 
quality assurance, for instance, it may be required to continuously track the number of VoIP 
flows in a network domain or the distribution of traffic composition across all links. Similarly, to 
achieve a given level of availability, it may be necessary to know, at all times, the percentage 
of links that operate above 50% utilization and to identify the 10 most loaded links. 

The best-known approach to computing aggregates in a distributed fashion involves creating 
and maintaining a spanning tree and aggregating state information along that tree, bottom-up 
from the leaves towards the root. Such a tree can be built in a decentralized, self-stabilizing 
manner, which guarantees robustness in the monitoring protocol. A second, less-studied 
approach involves the use of gossip protocols, which typically rely on randomized 
communication to disseminate and process state information in a network. 

While both types of protocols execute on a network graph, which can be realized as an 
overlay, there are significant differences between tree-based and gossip-based aggregation. 
First, gossip-based aggregation protocols tend to be simpler as they do not maintain a 
distributed tree. Second, tree-based protocols generally deliver the result of an aggregation 
operation at the root node. Gossip-based aggregation, on the other hand, produce estimates 
of the aggregate at all nodes. Third, node failures are handled very differently for the two 
protocol types. Tree-based protocols are often designed to be robust against node failure, and 
obtain this robustness by dynamically reconfiguring the aggregation tree. For gossip protocols, 
node failures can cause information loss, which causes a bias in the aggregation process and 
needs to be corrected. 

An important issue is therefore to examine the suitability of the two approaches for 
aggregation tasks arising in large dynamic networks, and to compare their performance 
regarding metrics such as accuracy and adaptability. Contributions have been made in the 
following areas: 

 Gossip-based protocols that are robust against node failures (Section 4.1.1) 

 Comparing tree-based and gossip-based aggregation in the context of MANET‘s 
(Section 4.1.2) 

 Gossip-based solutions to threshold detection (Section 4.1.3) 

 Tree-based aggregation of histograms (Section 4.1.4) 

 Tree-based aggregation with controllable accuracy (Section 4.1.5) 

In the remainder of this section we summarize the results obtained in these areas. 

4.1.1  Robust Gossiping for Network Management 

Gossip protocols, also known as epidemic protocols, can be characterized by asynchronous 
and often randomized communication among nodes in a network [44][45]. Originally, they 
have been proposed for disseminating information in large dynamic environments, and, more 
recently, they have been applied to various tasks, including constructing robust overlays [46] 
and estimating the network size [47].  

A gossip protocol for monitoring network-wide aggregates executes in the context of a 
decentralized management architecture. In this architecture, monitoring nodes with identical 
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functionality organize themselves into a management overlay. The aggregation protocol (in 
this case, the gossip protocol) runs in the monitoring nodes, which communicate via the 
overlay. Each monitoring node collects data from one or more network devices. The protocol 
aggregates this data, in a decentralized fashion, to estimate the SUM, MAX, AVERAGE, etc., 
of the device variables. A management station or an application server can access the 
management overlay at any node. Node or link failures—on the physical network or the 
management overlay—cause recovery actions in the management overlay, thereby enabling 
continuous operation. This allows a gossip-based management overlay to handle not only 
fixed networks where failures can generally be assumed to be infrequent, but also networks 
such as MANETs with a high degree of node and link dynamicity, in this way covering a wide 
set of scenarios related to the Future Internet. 

We have designed a protocol, G-GAP, which hardens the Push-Synopses protocol due to 
Kempe et al. [44] by making it robust to certain classes of node failures. In Push-Synopses, 
each node i has two local state variables si and wi. At initialization time, when computing the 
aggregation function AVERAGE, si is set to the value of the local variable being aggregated 
and wi is set to 1. Then the node sends the pairs to itself to start the computation. 

Round 0  { 

1. 
ii xs ; 

2. 1iw ; 

3. send ),( ii ws  to self } 

Round 1r  { 

1. Let * *{( , )}
l l

s w  be all pairs sent to i   

during round r  

2. *

li l
s s ; 

*

li l
w w  

3. choose shares 0, ji  for all nodes j   

such that 
j ji 1,  

4. for all j  send )*,*( ,, ijiiji ws to each j  }  

Figure 4-1: Push-Synopses, pseudo-code for node i 

The protocol is a round-based protocol where nodes execute the protocol shown in Figure 
4-1. The estimate of the aggregate on a node i for a given round is computed as si/wi and this 
ratio is shown to converge exponentially fast for the case of uniform gossip. The correctness 
of the protocol (in the sense that the estimate converges to the true value of the aggregate) 
relies crucially on invariants which express ―mass conservation‖. These invariants state that, 
for all rounds, the sum of the variables si and wi, respectively, remain constant or, more 
precisely, that ∑i si = ∑i xi and ∑i wi = N (for N the number of nodes in the network). 

The Push-Synopses protocol has two major limitations: the protocol does not support 
continuous monitoring of aggregates (i.e., if the local value changes, this change is not 
reflected in the computed aggregate) and the protocol is not robust to node failures. These 
limitations are basically results of violations of the above invariants, which would result in 
―mass-loss‖. 

The G-GAP protocol extends Push-Synopses in two directions. First, we adapt ―Push-
Synopses‖ to continuous monitoring. Second, and more importantly, we extend the protocol 
with a scheme to provide accurate estimates in the event of (many classes of) node failures. 
Due to space constraints we refer the reader to [48] for the details of these extensions, the 
analysis of the convergence and proof of correctness of the protocol. 

We have evaluated G-GAP through extensive simulations using the SIMPSON simulator [51], 
a discrete event simulator that allows us to simulate packet exchanges over large network 
topologies and packet processing on the network nodes. In various scenarios, we measure 
the average relative estimation error by G-GAP on the network nodes, in function of the round 
rate, the network size, and the failure rate, in order to evaluate the protocol against our design 
objectives. (Note that estimation errors may incur costs. Examples of such costs include lost 
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revenue due to under utilization or penalties because of violated SLAs.) In addition to G-GAP, 
we run most simulation scenarios also with GAP [49], a tree-based protocol we have 
examined in work prior to 4WARD. This allows us to compare the use of a gossip protocol with 
a protocol that is based on spanning trees for the purpose of monitoring network-wide 
aggregates. To make the comparison fair, we measure the performance metrics of both 
protocols for a comparable overhead. We present here results from two scenarios. The 
complete evaluation is reported in [48]. 

In the first scenario, we measure the average estimation error and the 90th percentile of G-
GAP and GAP in function of the network size. We run simulations with network graphs 
generated by GoCast [46], a gossip-based protocol for creation and maintenance of overlay 
networks with fixed connectivity. We have run experiments for networks of size 
82,164,327,654, 1308, 2626 and 5232 nodes with a GoCast target connectivity of 10. The 
monitored variable represents the current average number of HTTP flows in the network. We 
s

[52]. The results are shown in Figure 4-2. We observe that for both protocols, the 
estimation error seems to be independent on the network size. In the general case, for 
synthetic traces generated by the same (random) process, we would expect such a result for 
both GAP and G-GAP. 

In the second scenario, we evaluate the robustness properties of G-GAP. For this scenario, 
we use the same local traces as in the scenario above (for the 654-node network described 
above). For each simulation run, we vary the failure rate from 0 to 10 node failures/sec and 
measure the average estimation error and its 90th percentile. Failure arrivals are generated by 
a Poisson process, and failures are uniformly distributed over all running nodes. A node that 
failed recovers after 10 sec and reappears in the place it had in the overlay before the failure. 
The results are shown in Figure 4-3. As can be seen from the figure, the estimation error for 
both GAP and G-GAP increases (almost linearly) with the failure rate. We also see that the 
slope is steeper and the spread is wider for G-GAP than for GAP. 

The simulation results from this work suggest that we have achieved the design goals 
regarding robustness, overhead, and accuracy. We show that the trade-off between 
estimation accuracy and protocol overhead can be controlled by varying the protocol round 
rate. For the traces we used, an estimation error of some 5% or less can be achieved for all 
network sizes and failure scenarios we simulated. We also observe that the estimation 
accuracy of the protocol, for a given overhead, does not seem depend on the network size, 
which makes the protocol scalable. Finally, we prove and validate that the protocol is robust to 
discontiguous failures. 

 

Figure 4-3: Estimation error vs. failure  

rate for GAP and G-GAP 

 

Figure 4-2: Estimation error vs. failure  

rate for GAP and G-GAP 
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A second contribution is a comparative assessment of G-GAP with GAP, a fairly standard 
tree-based aggregation protocol. Our simulation results show that, within the parameter 
ranges of the simulation scenarios, the tree-based protocol consistently outperforms the 
gossip-based protocol. For comparable overhead, the tree-based protocol shows a smaller 
average estimation error and a smaller variance of the error than the gossip-based protocol, 
independent of network size and independent of frequency of failures that occur in the 
network. 

4.1.2 Gossip-based vs. Tree-based Aggregation for MANETs 

In the previous section, we performed a comparison of a tree-based vs. a gossip-based 
protocol in a fixed network setting. For all scenarios investigated, the tree-based protocol 
consistently outperformed the gossip-based protocol in terms of accuracy, scalability and 
robustness. 

In this section, we report on a preliminary comparison of the performance of a tree-based and 
a gossip-based algorithm for continuous estimation of network-wide aggregates in a MANET 
environment [53]. The performance evaluation is done through simulation, using the NS-2 
simulator. In various scenarios, we measure the estimation error by the protocols in function of 
the protocol overhead, the node mobility, and the number of mobile nodes, for the aggregation 
function SUM. The protocols are implemented on top of the LLC/MAC layer and hence use the 
physical layer connectivity as the overlay graph. 

As we found out during the simulation runs, for most parameter settings, the version of G-GAP 
we use performs very poorly due to message losses (between 1-5% depending on the 
scenario) that is inherent to wireless environments. We decided therefore to evaluate G-GAP 
under the assumption that no message loss occurs. We call this idealized protocol G-GAP-NL. 
The performance of G-GAP-NL represents the optimal performance of a protocol that is based 
on G-GAP. 

The performance of the protocols GAP and G-GAP-NL has been evaluated in various 
scenarios with regards to efficiency, mobility and scalability. The primary evaluation metric 
used is the average relative estimation error. (As mentioned earlier, estimation errors may 
incur costs.) The qualitative results of the evaluation are presented in Figure 4-4. We refer the 
reader to [53] for the details of the simulation setup and the results of the evaluation.  

 

Regarding efficiency, our studies suggest that at low protocol overhead, the gossip-based 
protocol gives better estimation accuracy than the tree-based protocol for a given mobility 
pattern and network size. However, for higher protocol overhead, the tree-based protocol has 
better estimation accuracy. Regarding mobility, for a given protocol overhead and network 
size, the tree-based protocol has better estimation accuracy at low mobility while the gossip-
based protocol performs better at high mobility. Regarding scalability, for a given protocol 
overhead and mobility pattern, the tree-based protocol has better estimation accuracy for 
small networks while the gossip-based protocol performs better for large networks. From the 
results, we conclude that the gossip-based protocol is better suited for resource-constrained 

 
Figure 4-4: Comparison of tree-based (GAP) and gossip-based (G-GAP-NL) protocols for real-

time monitoring: qualitative results from simulation study 
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environments with high mobility and large size. The tree-based protocol is better suited for 
environments that allow higher protocol overhead, exhibit low mobility and are small in size. 

There are two important caveats to these conclusions, however. First, the presence of node 
failures affects the performance of the G-GAP protocol very significantly, as we have pointed 
out. Second, more work is required to determine to which extent the results are artefacts of 
specific implementation decisions, or whether they indeed reveal inherent performance 
differences between the tree-based and gossip-based approaches. Further work is needed to 
throw light on this. 

4.1.3 Threshold Detection Using Gossiping  

Threshold crossing alerts (TCAs) indicate to a management system that a monitored 
management variable, for instance a MIB object, has crossed a preconfigured value—the 
threshold. Variables that are monitored for TCAs typically contain performance-related data, 
such as link utilization or packet drop rates. 

In order to avoid repeated TCAs in case the monitored variable oscillates, a threshold Tg+ is 
typically accompanied by a second threshold Tg- called the hysteresis threshold, set to a lower 
value. The hysteresis threshold must be crossed, in order to clear the TCA and allow a new 
TCA to be triggered when the threshold is crossed again (Figure 4-5). 

The straightforward approach for the detection of threshold crossings of network-wide 
aggregates is to use an aggregation protocol to continuously compute the aggregate on a 
node and to evaluate on that node the threshold conditions every time the aggregate is 
updated. Several results, both centralized and decentralized, that improve on this approach 
have been published recently. The common goal is to achieve efficiency by reducing protocol 
overhead when the aggregate is far from the threshold. 

The key idea in adapting a gossip based aggregation protocol to threshold detection is to 
dynamically adjust the message rate of a node (the rate at which a node communicates 
updates of its local state) according to the distance of its local estimate of the aggregate to the 
current threshold. To develop this idea, three largely orthogonal problems need to be 
resolved. First, the underlying mechanism for dynamic rate adjustment needs to be identified. 
We propose and explore two mechanisms: reducing the message rate and completely 
suppressing messages. Second, the mechanism for raising and clearing TCAs needs to be 
identified. Triggering TCA‘s on the basis of the local aggregates only is likely to result in an 
unacceptable level of false positives and false negatives. We propose and explore the use of 
filters and global snapshot algorithms for this purpose. Finally, the mechanism for exploiting 
the duality of the problem (i.e., the detection of upward of the upper threshold is technically 
the same as detecting the downward crossing of the lower hysteresis threshold.) needs to be 
identified. We propose and explore one such mechanism. 

Altogether we identify a design space of 18 protocols, ranging from a baseline design called 
NNM to the most complex design, called SGM. The NNM protocol uses continuous monitoring 
without any filtering, and the SGM protocol uses both message filtering/suppression and 
global snapshots. In [55], the design space is explored, specifically concentrating on three 
protocols in this space which we have found most interesting. Readers are encouraged to 
consult [55] for details of the design space and the selected protocols.  

We have evaluated key points in the design space outlined above through simulation using 
SIMPSON [51] through many scenarios where we evaluate the efficiency, the quality of 
threshold detection, scalability with respect to the number of nodes and the controllability of 
the protocols. Here we describe one result that demonstrates the efficiency of the protocol.  
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In one scenario, we assess the efficiency of the most advanced protocol SGM against the 
baseline protocol NNM by measuring the protocol overhead (as the average number of 
messages processed/sec/node) in a scenario where several threshold crossings occur. We 
run the protocols on a 654-node network graph generated by GoCast [46]. The simulation is 
run for 45 seconds and Figure 4-6 shows the trace of the simulation. The figure shows how 
the monitored aggregate and the protocol overhead vary over time for the two protocols.  

Figure 4-6 shows that during the simulation run, three threshold crossings occur: at around 
t=8.3 sec (upper threshold crossing), t=24 sec (lower threshold crossing) and t=38.2 sec 
(upper threshold crossing). For the baseline NNM protocol, since no message throttling is 
employed, the protocol overhead is constant (at around 20 msg/sec/node). For the SGM 
protocol, before each threshold crossing, e.g., between t=7 sec to t=10 sec, we observe a 
peak in protocol overhead, as the number of nodes sending messages increases. 

The results of the evaluation, at least for the choice of aggregation function and local variables 
in our simulations, are promising: when the aggregate is far from the threshold the protocol 
overhead is negligible, and when the aggregate is close to the threshold the overhead is 
comparable with that of the underlying aggregation protocol. We obtained small detection 
delays and, for the scenarios considered in this paper, absence of false positives and false 
negatives. Regarding scalability, at least for the scenarios considered in this paper, we did not 
observe any significant dependence of detection delay on system size.  

4.1.4 Decentralized Real-Time Monitoring of Network-wide Histogram  

Distributed solutions for the aggregation of local variables usually push the aggregation 
function inside the network and aggregate the partial result in a decentralized way. Such 
solutions prove to be very efficient and exhibit good load balancing properties, along with 
increased robustness and resilience to network dynamic [59][56][57]. However, they are 
individually tailored for the specific envisioned 
functionality and cannot be used in case the 
management station switches the objective function. 
E.g., a single instantiation of a distributed protocol 
designed for aggregating SUM cannot provide an 
answer for a MAX or MIN query at the management 
station; hence a new instantiation of a different 
protocol is required. To address this, one option is to 
design a distributed protocol that provides the 
management station with an accurate estimate of 
the histogram of the monitored local variable. Based 
on the estimate obtained through a single protocol 
instantiation, the management station has the 

 
Figure 4-5: Threshold crossing alerts 

 

Figure 4-6: The protocol overhead over time for the SGM and NNM protocols 
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flexibility of applying locally any desired statistical function, either sequentially, or in parallel, 
e.g., SUM, MIN and MAX queries can be answered in the same time only through local 
manipulation of the aggregate histogram. 

We address the problem of continuous monitoring of a local variable's histogram with 
accuracy objectives for large-scale network environments. Our goal is to design an efficient 
aggregation protocol that allows us to control the trade-off between the accuracy of the 
estimation and the protocol overhead. Our protocol continuously computes the distribution of 
the values of a monitored local variable through histogram aggregation by (i) creating and 
maintaining a self-stabilizing spanning tree and (ii) incrementally aggregating the variable's 
histogram along the tree (Figure 4-7). It is push-based in the sense that changes in the partial 
distribution of the monitored variable values are sent towards the management station along 
the aggregation tree. The protocol controls the management overhead by filtering updates that 
are sent from nodes to the management station, by allowing for local errors between the last 
sent updates and the present network status. 
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Figure 4-7: Histogram aggregation on trees 

The local filters periodically adapt to the dynamics of the monitored variables and the network 
environment, keeping in mind a global error objective for the monitoring process. All 
operations in our protocol, including computing the partial histogram of the variable and the 
configuration of the local error shares, are executed in a decentralized and asynchronous 
fashion to ensure robustness and achieve scalability. While designing our protocol we keep in 
mind the goals of (i) controllable accuracy, as a trade-off between aggregation accuracy and 
protocol overhead, (ii) dynamic adaptation to changes in the network topology, or changes in 
the evolution of local variables, (iii) controllability in terms of real-time changing the accuracy 
objective, or protocol response to system changes, and (iv) scalability, as we design our 
protocol for large distributed systems. 
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Our proposed heuristic algorithm for error-share allocation comprises an initialization phase, in 
which the error-shares are distributed to parent nodes in the management tree starting from 
the root node. Furthermore, it adapts the error-share allocation at runtime, based on 
monitored changes in the local variable dynamics, and in the network topology [58]. Figure 4-8 
presents the protocol overhead results obtained by our algorithm in terms of reduction in 
maximum link utilization for network graphs of different sizes. We observe that even a small 
tolerated error in the aggregated histogram leads to a dramatic reduction in the maximum link 
utilization, hence a significant reduction in protocol overhead. Our solution can control its 
operation point on the trade-off curve between protocol overhead and system accuracy 
objective.  

4.1.5 Controlling Performance Trade-offs in Adaptive Network Monitoring 

 A key requirement for autonomic management systems is a short adaptation time to changes 
in the networking conditions. In a dynamic environment, where networking conditions change 
fast, a slow-adapting management system lags behind the system state. In such scenarios, a 
slow-adapting management system provides outdated configurations, thus never reaching a 
configuration that permits to meet the manager‘s goals. 

In this section, we focus on the adaptation time of a monitoring system to changes in the 
performance objectives, network topology or networking conditions. We investigate this topic 
using (as an example) A-GAP, a tree-based distributed protocol for continuous monitoring of 
global metrics [70]. Based on a stochastic model, the A-GAP protocol dynamically configures 
local filters that control whether an update is sent towards the root of the tree. These filters are 
the mechanism we use for trading accuracy and overhead.  

We make two main contributions. First, we show that the adaptation time of a distributed 
monitoring protocol can be controlled. This result adds to our previous work, showing that the 
performance of a distributed monitoring protocol can be controlled along different performance 
dimensions, including protocol overhead, protocol accuracy, and adaptation time (Figure 4-9). 
Second, we demonstrate (through simulation experiments) that there is a trade-off between 
the adaptation time of the protocol and the protocol overhead in steady-state. This trade-off is 
controlled by the topology of the tree for the case of A-GAP and we show that the choice of 
the topology can be used to achieve performance objectives. Generally, allowing a larger 
protocol overhead permits reducing the adaptation time. 

 
Figure 4-8: Maximum link utilization 
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Figure 4-9: Performance trade-offs in decentralized monitoring. The figure on the right shows 

the border of the feasible region for a protocol such as A-GAP 

While it is well known that the topology of the tree strongly influences the performance of 
monitoring protocols [70] there is no literature on how to effectively control the protocol 
performance through the tree topology. We have analyzed the performance of A-GAP through 
extensive simulations using the SIMPSON simulator [51]. Detailed results are reported in [70] 
which we refer to for detailed information on the simulation setup. Here we bring out the main 
points only.  

We have measured the protocol adaptation time in function of the experienced overhead (the 
maximum overhead across all nodes). Figure 4-10 shows the measurement results for a 
network of 200 nodes. Every point in the figure corresponds to a simulation run.  

As can be seen, the adaptation time decreases monotonically, as the overhead increases. For 
smaller overheads, the adaptation time decreases faster than for larger overheads. 
Consequently, the adaptation time can be reduced by allowing a larger overhead. For 
example, compared to an overhead of 18,3 updates/sec, allowing an overhead of 20,5 
updates/sec (a 10% increase) reduces the adaptation time by 55%. An overhead of 29,1 
updates/sec reduces the adaptation time by 97%. 
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Figure 4-10: Adaptation time as a function of the incurred overhead for a network of 200 nodes 

We have also analyzed the overhead in steady-state for different aggregation trees for 
networks of different sizes. Figure 4-11 shows the measurement results. The y axis represents 
the maximum number of processed updates across all nodes. The x axis represents the 
number of aggregating nodes in the tree, i.e., the degree of decentralization. Every point in the 
figure corresponds to one simulation run.  

We observe that as we increase the degree of decentralization, the overhead decreases. For 
low decentralization degrees, the overhead decreases faster than for high decentralization 
degrees. 
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Figure 4-11: Management overhead incurred by A-GAP as a function of the number of 
aggregating nodes (degree of decentralization) for different aggregation tree degrees 

From these results, we conclude that the overhead can be significantly reduced adopting 
configurations with a low degree of decentralization. For instance, for a 200-node network, 
using just 7 aggregating nodes (less than 5% of the nodes in the network) the overhead can 
be reduced by more than 75% compared to using one aggregating node (i.e., using a 
centralized approach). 

An interesting observation is that these results suggest that the overhead is almost 
independent from the tree degree for balanced trees of constant degree. This holds for all our 
experiments except those where the tree degree is comparable to the network size (for tree 
degrees of 50 and 100 in the case of a 200-node network. This shows in the figure, where two 
points, corresponding to tree degrees 50 and 100, do not fit into the negative exponential 
trend). This suggests that (in terms of protocol overhead, and for balanced trees of constant 
degree) it is more important how much to decentralize, rather than how. In other words, the 
most important characteristic of the aggregation tree is the number of aggregating nodes in it. 

In addition, our results show that the overall management overhead scales logarithmically with 
the number of aggregating nodes [70], which makes A-GAP scalable. Finally, our results show 
that the adaptation time primarily depends on the height of the aggregation tree [70]. The 
adaptation time remains short for low tree heights, and then it rises sharply with growing tree 
height. (In our experiments, this rise happens at the height of 3 or 4 levels.) 

4.2 Real-time Monitoring for Routing 

 Real-time monitoring can play an important role in supporting the routing operations in clean 
slate networks. In fact, in many routing protocols and applications there are embedded 
operations related to the network state monitoring. Typically these monitoring functions are 
relatively simple and related to resource or topology discovery and resource consumption. 
Topology or dynamic path discovery is typical for reactive routing protocols (AODV [86], DSR 
[87]) while link quality evaluations are typical for so called link state routing protocols (CGSR 
[88], DSDV [89], OLSR [90], TBRPF [90] and OSPF [92]). Typical simple approach which is 
used by many protocols is based on periodic sending of HELLO messages. They are used for 
topology discovery, fault management and link state quality evaluation.  

The novelty of the proposed approach in 4WARD is a separation of monitoring from routing. 
There are several advantages of the proposed approach: 

 real-time monitoring functions are useful not only for routing but also for other 
purposes like anomaly detection, denial of service attacks, intrinsic network adaptation, 
etc. Due to the proposed approach the monitoring data are reusable, 

 as opposed to relatively simple monitoring algorithms implemented in routing protocols 
in-network management monitoring operations are much more sophisticated and they 
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can provide network state information in more cost effective manner and with a greater 
accuracy,  

 separating monitoring from routing make the routing protocols simpler and simplifies 
routing protocol operations, they may focus on core routing operations like 
maintenance of routing tables, 

 the monitoring functions might be tailored to every networking technology i.e. they can 
deal with monitoring of physical and link layers in a cross-layer approach making core 
routing operations less dependent on the networking technology used.  

Generally the INM monitoring operations can be split into two groups: 

 Resource monitoring - typically encompasses: resource discovery, measurements of 
available resources quantity and quality, and failure detection.  

 Traffic monitoring – operations which provide information about resource consumption 
and traffic properties.  

While the traffic monitoring is widely used the measurement of resources is a new element. 
This is caused by fact that many latest networking technologies like xDSL, 802.16 and 802.11 
in response to SNR will change modulation and channel coding schemes used, and in result 
link bitrate and delay may change. So, the classical assumption that link capacity is fixed is no 
longer true in these networks. 

Traffic monitoring has at least two important motivations. The first one is to calculate the 
metric of links – this operation is of premium importance for proactive link-state protocols. The 
second one is to analyze the incoming traffic in order to identify flows or other specific traffic 
properties (for example applications which were responsible for traffic generation). The 
second approach is important in so called flow aware routing and application aware routing 
(classical approach of Deep Packet Inspection to routing).  

From the management point of view, today‘s IP networks can be divided into two categories:  

Well managed networks: This category includes all wired and wireless networks which can 
be seen as are deployed by network operators and deployment process is usually supported 
by careful planning procedures. During operation, such networks are managed and monitored 
by classical centralized OAM systems which are typically tied to the technical solutions used 
for every OSI layer (e.g. for SDH transmission a subsystem). Typically, there is no cross-
system (cross-layer) information exchange between such systems which can lead to 
inefficiencies in overall system operation. The well known drawbacks of such a strategy can 
be observed in handling alarms in IP networks built on the top of ATM over SDH networks. It 
should be emphasized that in such ‗classical networks‘ the topology is virtually fixed. Thus, 
after the deployment no network configuration is needed that poses sharp real-time 
constraints except the case of handling the failures (rerouting). The other exception can be 
linked to the increase of traffic which may lead to link overloading and call for link 
reconfiguration or traffic handling policy changes; this, however, can be pre-planned to a great 
extent in most practical cases. It is worth mentioning that in this class of networks the quality-
of-service provided by layers below the network layer is generally very high, and so is the 
‗stability‘ of resources that have impact on routing. Thus, network resources which are 
available to the services are not changing in time. The latter property strongly impacts the 
design of routing protocols for this class of networks.  
Ad-hoc networks (nomadic networks, etc.): In this case, typically there is no infrastructure 
nodes nor links, the topology of the network can change very fast, and the quality of links 
varies in time (in terms of available bit rate, packet error rate, link availability, etc.). These 
features make classical routing protocols insufficient to guarantee satisfactory operation of the 
network. In response to this problem a plethora of routing protocols has been developed by 
IETF MANET group (for example AODV, OLSR, DSR). Many of them have incorporated some 
kind of real-time management and monitoring used e.g. for discovery of network topology, link 
quality estimation in case of proactive routing, and building the forwarding tables. Monitoring is 
also used for efficient mobility handling. It has to be emphasized that monitoring operations in 
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all MANET protocols are not separated as a set of specific functions orthogonal in a sense to 
the routing and data forwarding functions.  
Both classes of routing protocols as above are typically not tied together and they are still 
designed and analyzed separately despite an enormous growth of networking devices that 
begin to be used in mixed wireline/wireless heterogeneous (computers, multimedia terminals, 
multifunction mobile phones, wireless access points, small IP switches, home networks) 
environments‖. This growth makes centralized, end-to-end management difficult, and 
sometimes impractical.  

Additionally, there is a significant growth in deployment of networking solutions which have 
intrinsic limitations in providing reliable and stable transport service. Notably WiFi devices 
which work in unlicensed radio bands (ISM) may experience unexpected link quality 
deterioration as a result of radio interferences from other devices. The built-in auto fall-back 
mechanism, which adapts the maximum data transmission rate to the radio channel quality 
(SNIR), impacts available link capacity in unpredictable manner. The mixed wireline/wireless 
network can be treated as new kind of access network with a high potential especially for 
nomadic users. It is characterized by three important properties: 

 The management operations are limited due to intrinsic technological limitations and 
the scalability issues. 

 The available resources of nodes and links can slowly change in time - they are not 
fixed anymore. 

 The network topology of this type of networks is not fixed. 

Accounting for these properties calls for a new approach to the routing problem. The basic 
requirement here is that the routing protocol has to take into account the extremely 
unpredictable and uncontrollable (in a sense) behaviour of network devices that typically leads 
to a limited reliability of the network. So, the role of routing protocol is to create reliable routes 
in a dynamic manner taking into account the factors as above. Multipath routing techniques 
seem to be a useful tool which can help to achieve this goal.  

Real-time monitoring plays a crucial role for this type of routing – it should measure the 
resources available as well as their usage. Separating RTM operations from routing provides 
a new approach to protocol engineering – ‗core‘ routing operations are independent from RTM 
operations.  

In the network with limited management (as described above) real-time monitoring (RTM) can 
play multiple roles: 

 It can be used for network topology discovery and network topology changes.  

 It should monitor the quality of the offered resources using a set of appropriate metrics. 

 It should monitor the usage of the network resources. 

 Based on anomaly detection (at the traffic level) it can discover link or node failures. 

In order to perform its operations not only RTM function has to be implemented in all network 
nodes but also it should allow for distribution of monitoring data among the nodes. In order to 
guarantee robustness of the network (no single point of failure) the RTM subsystem should be 
distributed, nodes should have self-management properties and the exchange of information 
between nodes should be minimized in order to provide low control data overhead.  

The proposed use of RTM for routing leads to novel decomposition of routing architecture. 
The decomposed architecture of routing is presented in Figure 4-12. It consists of the 
following modules: 

 Real-time monitoring subsystem (RTM) – a component of INM. 

 Routing Table Building Module (RTBM). 

 Data Forwarding Module (DFM). 

This decomposition enables different approach to routing compared to that typically employed 
– the routing protocols don‘t have to measure the quality and the quantity of offered resources 
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nor their usage. This is the role of RTM. The other modules have only to analyze the 
information obtained from RTM via API. This information is used for forwarding table creation 
and data forwarding. Using this information various algorithms can be deployed, including 
adaptive routing algorithms sensitive to network state, and multipath routing algorithms, the 
latter being emphasized as important element of 4WARD (developed in WP5). The proposed 
decomposition can facilitate a new approach to routing where every functional block 
(subsystem) can be optimized or modified independently of the others. 
 

Real- time monitoring subsystem (Part of INM)

Routing Table Building Module (RTBM)

Data Forwarding Module (DFM)

(inside every node)

RTM API

 
 Figure 4-12 Generic decomposed architecture of routing subsystem in 4WARD networks 

Every module of the architecture has implemented a set of specific mechanisms or functions. 
RTM of course serves for multiple purposes but it offers mechanisms which support routing 
operation. The following functions are performed by RTM, RTBM and DFM:  

 

RTM Subsystem 

The RTM subsystem is responsible for collecting and disseminating information about 
available and consumed network resources. This information is distributed among the nodes. 
This dissemination can be coupled with some processing (aggregation) in order to limit control 
data overhead and improve scalability of the routing system. Information about the network 
state can be obtained via active probing and passive measurements (traffic observations). 
Additionally, the network conditions in a near future can be predicted via analysis of the 
measurement history. The routing procedures may have impact on the frequency of issuing 
active probes, sampling the traffic or calculating traffic statistics. In order to limit the overhead 
traffic induced by RTM, the measurement reports consist of averaged data and during the 
dissemination they are subject to further reduction in intermediate nodes. In several routing 
approaches there is a possibility of reducing the accuracy of the information which describes 
the network state or aggregation of information about resources which are mutually distant 
one from another. This approach is especially suitable in case of the so-called adaptive loose 
source routing approach (no strict paths between sources and destinations). Active probing of 
resources enables network topology discovery and learning topology changes, and it also can 
be used for early failure detection. It is worth mentioning that intrinsic RTM mechanisms 
enable the discovery of local topology of the network, and even of local connectivity structures 
(in terms of n-hops); clearly, RTM is not responsible for creating end-to-end paths. RTM 
resource measurement reports consist of information about the network, node or link state 
according to a predefined metrics. This metrics typically include information about [60]: 

 links/paths delay, 

 links/paths delay jitter 

 links/paths offered capacity, 
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 links/paths usage level,  

 links/path reliability/ reputation, 

 links/paths BER/PER, 

 nodes power reserve (important in case of battery powered nodes). 

The parameters listed above are typically technology-independent, however, wireless and 
wired networks require different approach to resource consumption estimation (even given the 
same metric). Additionally, in wireless networks the parameters of different OSI layers will 
often be used for metric composition (cross-layer approach).  

In 4WARD it is expected that RTM will provide basic metrics parameters which will be 
subsequently processed by the routing procedures.  

RTM control data is exchanged with RTBM via API. It is envisioned that there can be a mutual 
data exchange because some operations related to the end-to-end path monitoring (or 
monitoring of generic paths) can be incorporated into RTBM. The mutual exchange of the 
measurements between RTBM and RTM will be investigated later on. 

Routing Table Building Module (RTBM) 

This module takes the information about all available/discovered resources and local (n-hops) 
connectivity table via API from RTM subsystem in order to create end-to-end routing tables. In 
case of multipath routing several paths between a source-destination pair are created. This 
operation can be proactive (i.e. paths are established before the traffic is send) or reactive 
(path setup on demand). The existence of RTM local and overlapped topologically 
connectivity tables helps in fast setup of end–to-end paths. The detailed definition of the 
operations of this module will be due to WP5. It is expected that a plethora of a variety of 
routing protocols can be implemented as RTBM, dependent on the network type which is used 
and the type of the service offered.  

Data Forwarding Module (DFM) 

This module is responsible for forwarding the data using the information about paths from 
routing tables which are created by RTBM. The forwarding schemes may take into account 
QoS requirements by splitting a data flow among different paths in order to increase overall 
data throughput and/or resilience. Again, the detailed definition of operations of this block will 
be due to WP5. 

The Generic Path (GP) constitutes an important 4WARD paradigm. WP5 is still working on the 
definition of generic paths [5]. In the context of the proposed architecture for routing GP can 
be treated as a service which is using physical resources monitored by RTM subsystem. It is 
expected that every GP will have built-in monitoring (as a part of service quality monitoring) 
which may cooperate with RTM in order to increase the resource monitoring accuracy and 
reducing control data overhead. Figure 4-13 shows the envisaged relation between RTM and 
other modules from Figure 4-12 and the generic path. 
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GENERIC PATH (GP)

Real- time monitoring subsystem (Part of INM)

Routing Table Building Module (RTBM)

Data Forwarding Module (DFM)

(inside every node)

RTM API

 

Figure 4-13: Generic Path and architecture of routing subsystem of 4WARD networks 

In the proposed architecture every GP uses an instance of a specific DFM and uses a subset 
of forwarding table created by RTBM (in a VPN style). This draft proposal requires more 
detailed analysis but is in line with current WP5 vision. 

4.3 Use of Real-time Monitoring to Create Situation Awareness 

INM will introduce new qualities into the network. The goal is the automation of management 
tasks by enabling self-management and learning capabilities in the network. Decision-making 
processes are moved into the network and executed in the network nodes. In order to achieve 
such level of intelligent behaviour it is necessary to enable cognitive features in the nodes. 
Instead of merely reacting in pre-conceived ways, the system is capable to respond even to 
previously unencountered situations and becomes open to evolution.  

Situation awareness provides here the appropriate conceptual framework under which 
advanced self-management capabilities can be designed. Situation awareness addresses the 
observation and collection of network state data, the interpretation of its meaning and 
understanding of the implications of the network situation. The objective is pre-emptive 
strategic behaviour. The network is not just observing what has already happened, but aims to 
derive what is expected to happen in the immediate future. By detecting critical developments 
at an early stage the system will initiate countermeasures that prevent undesirable situations 
to actually occur. 

A definition of the conceptual framework for situation awareness and its integration with the 
4WARD self-management architecture are presented. Benefits of the situation aware 
management will be demonstrated in application of the concepts to various management 
problems. Focus is on anomaly detection in network traffic, support for dynamic routing 
adaptation and congestion control in the network. 

4.3.1 Definition of Situation Awareness 

Situation Awareness is a conceptual framework originating from research in human factors. 
Situation awareness is explained as ―being aware of what is happening around, understanding 
how information, events, and own actions impact goals and objectives now and in the near 
future‖ [104]. Situation awareness (SAW) is a capability required by an actor operating in a 
challenging environment. Changes in the environment demand constant observation of 
events, comprehension of their meaning, projection on probable near future outcomes and 
decision making for own actions in order to optimally adapt and react to the current situation. 
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Wrong decisions may lead to drastic consequences possibly resulting in loss and severe 
damages, and inadequate reaction to the situation may ultimately even lead to disaster.  

Typical application fields include e.g. aviation and air traffic control, control of critical 
infrastructures like nuclear power plant management, emergency situations, military C3I 
(Command Computers Control and Information) etc. But also operator networks represent 
critical infrastructures, and network management tasks are characterized by the same 
constraints and challenges. Each of the classical FCAPS management categories implies in 
itself decision making processes that depend on situational understanding. 

By executing management functions on the network node, management tasks can be 
automated and performed more efficiently. In order to realize such an approach it is necessary 
that the network nodes themselves execute monitoring control loops and perform 
management decisions on how to best adapt to the dynamic environment. This requires 
situation awareness: the node must observe what is happening, must understand the 
relevance of perceived events and must select actions that are in line with the given 
management policies and are expected to best achieve the set management policies. 

4.3.2 Situation Awareness Model for INM 

The conceptual model for situation awareness places itself within the self-management control 
loops. It identifies factors that influence the creation of situation awareness and its relationship 
to the decision making process. 

 

Figure 4-14: Situation awareness in the self-management control loop 

Figure 4-14 depicts the self-management control loop. The self-managing entity continuously 
monitors its environment and reacts to the perceived observations: sensors and monitoring 
provide the observational raw data. Situation awareness is then the first step in the decision 
making process. Out of the raw data the current situation is extracted and evaluated. This 
information is input into the decision module that has to select the best response under the 
current situation. The execution module performs those actions that adapt the entity to the 
environment and attempts to influence the environment by their feedback in a favourable way. 
By self-learning, however, also the control process itself is adapted. The situation may 
influence and modify the data collection and evaluation process of the data.  
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Figure 4-15: Levels of situation awareness 

The problem of extracting the current situation out of the observations can be broken down 
into the three stages of perception, inference and prediction, see Figure 4-15. At the first step 
the raw observational data has to be consolidated. Filtering and aggregation allows to reduce 
the volume and to prevent information overload by improving the noise to information ratio. 
The process of perception may include mapping between formats and tagging with meta-
information like time-stamps, observation point identifier, precision etc. The result of the basic 
perception process is consolidated situational events that are further analyzed in the next step 
of inference. Those events are correlated and lead to an understanding of a given situation. 
The situation is then assessed in order to derive a prognosis on what is going to happen next. 
This information is input into the decision making process in order to take actions.  

The goal is to determine how the situation evolves and detect critical developments at early 
stages. Furthermore, prediction techniques help to assess how different alternative decisions 
would influence the situation. 

 

Figure 4-16: Sharing of situational information 

Nodes self-monitor in order to collect information as a basis for local decisions. The process of 
decision making can be enhanced via communication and information sharing (Figure 4-16). 
Sharing of information can refer to data from all stages: the raw monitoring data, consolidated 
situational events, situations objects, but also assessment of the situation and results of the 
local decision process for cooperative decision making. 

Furthermore, the observation of the behaviour of neighbour nodes assists in assessing their 
integrity, e.g. whether they behave in accordance to their assigned roles, whether they origin 
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or transfer malicious traffic, whether they are overloaded, etc. This information helps to weight 
information from neighbours according to trustworthiness, reliability and relevance. 

Entities and messages that are involved in the process in establishing situation awareness are 
depicted in Figure 4-17. Data Providers and Data Sources register themselves via an interface 
called Data Provider to the Directory, which is the key instance of the whole process as it is a 
mediator to the offered location information. Data Aggregators that are interested in situation 
information send a resolve to the Directory requesting the location of this situation information. 
Typical Data Aggregators that should be mentioned here are anomaly detection, route 
optimization / adaptive routing, congestion control and distributed validation. This way, from 
the INM architectural point of view a Data Aggregator could be interpreted as an INM 
application. Upon receiving the location information (which is similar to an URI) the Data 
Aggregator requests the situation information via its interface Data Consumer either by 
sending a ―get‖ or ―subscribe‖. In the former case the corresponding Data Provider will just 
reply once with the requested information, in the latter it will send this information continuously 
to the requesting Data Consumer every time new information are available. 

To get a better understanding of this process each entity and message is described below 
Figure 4-17 in more detail. 

 
Figure 4-17: Situation awareness framework 

Directory: The Directory is an entity that has knowledge about the location of offered 
information. It will reply to resolve requests for such information (which are known and 
registered at the directory) with an URI equivalent indicating the location of that information 

Data Source: A Data Source is an entity (e.g. sensor) that collects low level information such 
as traffic load and registers itself at the directory to offer those information to other entities 
(could be also seen as situation raw data) 

Data Aggregator: A Data Aggregator is an entity that uses information such as load, BER, 
etc., aggregates them (e.g. by applying certain algorithms), acts accordingly and offers those 
information to other entities via the directory. Example for INM applications are anomaly 
detecting, resource optimizations, distributed validation, etc.  

Data Provider: A Data Provider is an interface at Data Aggregator/Source which offers 
collected information to requesting entities (e.g. via IPFIX or XML) 

Data Consumer: A Data Consumer is an interface at a Data Aggregator/Source which 
requests the location of information at the directory and downloads those information from the 
indicated location afterwards (e.g. via IPFIX or XML) 
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Register: A Data Provider registers itself at the Directory with an URI equivalent indicating the 
location of its offered information to other entities or components 

Resolve A Data Consumer that wants to get certain situation data sends a resolve to the 
directory requesting the location information of this data. The reply sent by the Directory to this 
resolve request will contain an URI equivalent with the requested location information. 

Get/Subscribe A Data Consumer that is aware about the location of the needed information 
(a resolve request for the UCI has been sent previously) either sends a get or subscribe to the 
corresponding Data Provider. In case a ―get‖ is sent to the Data Provider it will just respond 
once with the requested information. Otherwise if a ―subscribe‖ is sent to the Data Provider it 
will transmit the requested situation data continuously to the Data Consumer if new 
information are available. It‘s worth to note that from the Data Consumer‘s point of view it does 
not matter whether the Data Provider is located at a Data Provider or Data Aggregator. 

4.4 Traffic Matrix Estimation 

Internet service providers need to know end-to-end traffic demands to analyse the load on 
their platform and to optimize the network. The traffic matrix is composed of the traffic 
demands (e.g. in Mbit/s) between all pairs of edge nodes (routers) within a considered 
topology. We have designed a method to estimate traffic matrices. Origin-to-destination traffic 
flows are calculated from statistical data measured locally by the routers.  

Routing of data within a domain under unique administration is usually based on interior 
gateway protocols following the shortest path first (SPF) principle. For a long time, link load 
statistics were the only standard source of measurement in networks to observe the traffic 
development, in order to upgrade links when the load approaches a threshold and to estimate 
the flow demands. Today, technologies support traffic engineering and network planning, 
allowing setting up predefined routing paths in normal operation as well as backup paths for 
eventual failure situations. In addition, the traffic volume on each path can be obtained from 
standard MIB values provided by routers.  

This provides the required flexibility to construct optimized path designs for traffic engineering 
purposes. Load balancing on links of the network can be achieved, which improves the overall 
quality of service (QoS) properties or can be used to increase the overall traffic load up to a 
level that still satisfies specified QoS requirements. If shortest routes are overloaded, some 
demands may be delivered on detours in order to balance the traffic flows to make full use of 
the available capacities.  

For network planning, traffic matrices on a point-of-presence (PoP) basis are required. They 
enable the simulation of various extension scenarios and the decision on topology changes. 
When traffic between two nodes exceeds a certain level, a direct link between those nodes 
might be more efficient than the extension of existing links, which would imply a higher 
percentage of multi-hop traffic.  

Our solution for the estimation of traffic matrices is presented in detail in Annex A.2.4. The 
presented method only requires as input metrics that can be computed locally by each router. 

Currently, we can estimate the traffic matrix every 15 minutes. Our future work includes 
reducing this time interval. This would permit to achieve faster reaction times to changes in the 
networking conditions. 

4.5 Distributed Cooperative Anomaly Detection 

Within this project we are developing methods for anomaly detection and fault localization that 
can be used to both detect abnormal behaviour, and localize the source of the anomaly in the 
network. In future networks, distributed methods for autonomously detecting anomalies and 
network faults are essential to maintain critical functionality within the network. 

Related work indicates that anomaly detection and fault localization are often based on 
network traffic analysis, such as traffic profiling, signature matching, signal analysis, statistical 
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analysis, etc (e.g. [61]-[66]). Apart from analyzing network traffic, another technique for 
anomaly detection and fault localization is active probing. For example, Rish et al propose a 
method that uses probe selection in order to detect and localize network faults [66].  

Many of these methods are developed for centrally managed networks. However, in a highly 
dynamic environment, in which heterogeneous equipment and software is used and where the 
network topology is constantly varying with nodes being added, removed or replaced, 
distributed methods for INM are more convenient. The focus on autonomous INM means that 
a distributed, localized approach to fault detection and localization is preferable, and since we 
cannot rely on manual configuration of parameters, the algorithm needs to be able to 
autonomously adapt to network properties. Keeping these requirements in mind, we have 
developed a method for collaborative and distributive identification of network anomalies and 
faulty nodes and links, using simple end-to-end test transactions or probes. 

The approach to local link monitoring used here is somewhat similar to that used in some 
routing protocols such as BGP, but the purpose differs in that we want to resolve errors to link 
and node level and report these as efficiently as possible for all entities in the network, while 
autonomously adapting to a wide variety of link qualities, including e.g. very lossy wireless 
channels. Our approach is more similar to heartbeat monitoring for fault localization in 
distributed systems (e.g. [67]) or local testing for fault detection (e.g. [68]), but those methods 
do not resolve link or node failures or adapt fully to local conditions. In the approach that we 
propose, statistics is applied in order to detect and reduce the uncertainty of a potential fault. 
Further, the algorithm adapts to varying network conditions which increases the robustness to 
e.g. false alarms. 

Our approach to distributed fault-management is to perform necessary operations in two 
steps. In the first step, abnormal network behaviour is detected using local measurements at 
each node, aggregate measures from subnets, and probes, in order to test the accessibility on 
network level of links and nodes, or the availability of services on the application level. The 
second step is initialized whenever a node has detected a possibly anomalous node in the 
first phase, in order to localize the fault to a certain node, process or link.  

For the developed algorithm, we assume that each node can perform a simple end-to-end test 
transaction, such as an ICMP request, on its neighbours, and measure the latency of this 
request. Further, each node needs to know the local topology, which in this case means 
awareness of all other nodes within two hops. Whenever a new node connects to existing 
nodes, it announces its presence and receives information about all nodes within two hops. 
The existing nodes that the new node is connected to notify all nodes about the added node, 
such that all neighbour lists are kept consistent. How this can be done in terms of the 
framework architecture is described in Section 3.7.1. 

If the local topology is known, simple test transactions are done to perform active probing for 
detecting faulty components and links. Each node probes its neighbours at time intervals that 
are adaptively determined by probe reply delays measured on the link to which the neighbour 
is connected. This way the link load with respect to probe traffic is reduced, compared to other 
methods with fixed probing intervals. Using the simplifying assumption that dropping a request 

is independent of the time to get a response t, the probability of getting a response to the 

probe within t is 

 P(R t ) (1 P(D)) P(t)dt
0

t

 (1) 

where P(t) is the probability density of probe responses at t, and P(D) is the probability of a 
dropped request. Further, we assume that all probes are statistically independent, which 

allows us to write the total probability of lacking a response given a set of probes {R t
(1), 

R t
(2),…, R t

(n)} as 
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P( R | t(1), t(2),..., t(n )) (1 (P(R t

(i)))
i 0

n

 
(2) 

such that with each failed probe the probability of a response decreases. When the probability 
of not receiving a response given previous probes has reached below a predefined threshold, 
a fault has been detected, and the process of fault localization is triggered. 

The aim of the fault localization process is to determine whether it is the probed node or the 
link that has failed. When a fault has been detected, the probing node will send a request for 
assistance to the neighbours of the possibly anomalous node, such that it can be determined 
whether the fault is in the possibly anomalous node or on the link. Upon request, each one of 
the assisting nodes sends probes to test the possibly anomalous node, reporting the result 
back to the requesting node. If any assisting node reports success, we know that we have a 
link fault. If no assisting node reports success, we can conclude that the node has failed. If 
only a subset of the nodes return success, the result is inconclusive. The procedure is 
illustrated in Figure 4-18: and Figure 4-19: 

 

Figure 4-18: When a probe fails, the probing node asks neighbouring nodes for assistance in 
order to identify whether it is the probed node or the link that causes the anomaly. 

 

 

Figure 4-19: Figure a) shows the normal case. Node A cannot reach B and sends requests to C 
and D to test the accessibility of B. Since the probe between C and B is successful, the link 

between A and B is considered broken. In figure b), A cannot access B or its neighbour. In that 
case A directly notifies relevant recipients. In figure c) The neighbouring node C is inaccessible 

due to a faulty intermediate node on the path. The probing node A ignores this and notifies 
relevant recipients about the probed node, possibly including the closest node on the path to C, 

in order to reduce detection time. 
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More formally, let n be a node in the network. Each node needs to keep track of the set of 
neighbouring nodes, Nn, as well as the sets of neighbours to each of these neighbours i, Nn

i. 
The procedure taken when connecting or disconnecting a node to the network can then be 
described as in Figure 4-20 performed for both connecting nodes. 

 

 

Figure 4-20: Algorithms for connecting and disconnecting nodes 

Further, let each node n store an error state Sn
i for each neighbour i. Each Sn

i represents the 
current state of ni as viewed from n, and can be assigned one of the following values: 

 No fault. No fault has been detected in the neighbour. 

 Link or node failure. A fault has been detected, but it has not been or it is not possible 
to determine if it is a link or node failure. 

 Link failure. A fault has been detected and diagnosed as a link failure. 

 Node failure. A fault has been detected and diagnosed as a node failure. 

The fault detection and localization procedures can then be described as in Figure 4-21. Note 
that storing and making use of the current state of neighbours is not strictly necessary for 
correct operation of the basic algorithm. However, it does significantly reduce the number of 

 

 

 

Figure 4-21: Fault detection and monitoring algorithms. 
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requests for assistance and thus messages in the network. Also note that monitoring of 
neighbours does not stop when a node or fault is detected as faulty, as we want to be able to 
identify if the problem goes away. 

In the algorithm, we need estimates of the parameters for the distributions P(D) and P( t). For 
the first one, we can easily estimate the parameters based on the recent fraction of dropped 

requests for the link. In the case of P( t), we also need to select a suitable parameterization 
for the density function. Thus, we performed a number of studies of link latencies in both wired 
and wireless networks, resulting in the choice of a gamma distribution. Figure 4-22 and Figure 
4-23 show examples of latency distributions along with the estimated gamma distribution for a 
number of wired and wireless links. The parameters of the gamma distribution are easily 
estimated from only a few counters for each link using a method of moments approach. 

 
Figure 4-22: Examples of latency distributions on a wired network. Starting at the upper left, the 

graphs describe the latency distribution on a local Ethernet link on servers with no, low, 
medium, and high load respectively. 
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Figure 4-23: Examples of latency distributions on wireless networks. The upper two graphs 

represent latencies in a 802.11b network with very low signal strength, and the lower two the 
latencies in a very simple sensor node. The graphs to the left show estimated gamma 

distributions on truncated data, while the graphs to the right show (exaggerated) versions of the 
actual histograms, indicating that in both applications there are connection problems that will 

be reported as intermittent error in our algorithm. 

For a completely adaptive, zero-configuration approach, we also need to set the timing 

parameter between probes  and the fault-detection limit  autonomously. Although they 
ultimately depend on the actual cost of probing, we believe that we can set them to fixed 

values, using a multiple of the expected link latency for , based on experience from large-
scale simulations on realistic networks that we are currently performing. Here we will assume 
that the cost of probing is proportional to the rate of expected link latency. In general, the cost 
is a trade-off between performance (in terms of detected anomalies) and link load. 

The main benefit of our statistical approach is that the time interval with which a probe is sent 
and also the number of probes used to reduce the uncertainty of a potential fault are adapted 
to the measured link latency such that only a minimal set of probes are needed to detect an 
anomaly. This way, the traffic load on the link is minimally affected by probe traffic, compared 
to ordinary heartbeat monitoring in which probes are sent frequently at fixed time intervals. 
Since probe intervals are determined autonomously for each individual link, the need for 
manual configuration is significantly reduced while optimal monitoring performance is 
achieved. As both anomaly detection and fault localization are performed in a distributed 
manner our approach also scales well with the number of network components while adapting 
to local conditions. Our method is easily used in dynamic networks with varying topology 
caused by so called churning (i.e. addition, removal or replacement of nodes) - without manual 
configuration, nodes can automatically exchange information about themselves and their 
neighbours to other nodes without having to know anything about the network topology. 
Finally, network equipment of today already fulfils most of the requirements needed to carry 
out described operations - the implementation of the protocols above should therefore be 
relatively easy. 

The algorithm has been implemented in the OMNET++, and we are currently performing tests 
on large-scale realistic topologies to test the performance of the algorithm. Initial results show 
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very fast response time to induced errors on both links and nodes, while the induced traffic is 
relatively low. 

4.6 Lessons from Developing the INM Paradigm 

In this chapter we have presented our work to date on real-time monitoring, anomaly detection 
and situation awareness. Based on this work, we present some lessons we have learnt 
regarding the development of the INM paradigm. 

Performance control. We have shown that the performance of a distributed monitoring 
protocol can be controlled along different performance dimensions, including protocol 
overhead, protocol accuracy, and adaptation time. Furthermore, we have shown that it is 
feasible to control the trade-offs among these performance metrics (Figure 4-9). Sample trade-
offs are estimation accuracy vs. management overhead and adaptation time vs. management 
overhead. For these trade-offs we have learnt that allowing a modest degradation in one 
performance metric can lead to a significant improvement in another performance metric. 

Scalability. Our simulation results indicate that key performance metrics of our monitoring 
protocols grow sublinearly with the system size. This applies to (1) the accuracy achieved by 
gossip-based monitoring for a given local overhead and (2) the overhead by our tree-based 
protocols for a given accuracy. 

Robustness. We have also shown that it is feasible to design management systems that are 
robust to topology changes (e.g., node failures). We have shown that this is feasible for two 
families of monitoring protocols: gossip-based and tree-based. Moreover, we have shown that 
the adaptation time to node failures is very short, a fraction of a second. 

Model-based management. We have shown the benefits of model-based management in the 
context of real-time monitoring and anomaly detection. We have learnt that the development 
of analytical models is key to design monitoring systems that are controllable and achieve 
performance objectives. In the context of anomaly detection, we have shown that such models 
permit providing probabilistic guarantees on the detection of anomalies. 

Feasibility. The results that we have achieved to data strongly suggest that it will be feasible 
to realize the INM paradigm and obtain the expected benefits. 
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5 INM Self Adaptation 

This chapter discusses network self-adaptation in the scope of INM. The network itself takes 
proactive or reactive network management actions for the purpose of recovering a fault, 
avoiding a predicted fault, or optimizing the network operation, by changing the network 
configuration, the network setup, or resource allocation. Chapter 4 discussed monitoring and 
situation awareness, which are the basis for learning the current state of the network and its 
operation. This chapter makes use of this knowledge in order to take corrective actions. 

Self-adaptation operations may take the widest scope possible, over the entire network. While 
some entities might implement self-adaptation mechanisms, they do so in a local scope, within 
their responsibilities. WP4 assumes full responsibilities for network-wide self-adaptation 
operations. Examples are load balancing (congestion avoidance), resource allocation and/or 
optimization, or fault recovery. 

The discussion about Self Adaptation is arranged as follows: 

Section 5.1 studies distributed network management benchmarking, i.e., the extent at which 
distributed processing is beneficial. Examining a few case studies, the research looks for the 
optimal point of INM distributed processing, considering the network environment and 
performance tradeoffs of scalability, robustness, adaptivity and overhead. 

Section 5.2 presents the core self-adaptation schemes, addressing resource reservation, 
resource optimization, self-adapting wireless multi-hop networks, configuration planning, event 
handler, probabilistic management paradigm, and congestion control. 

Finally, Section 5.3 compiles conclusions and lessons for a clean slate approach. 

5.1 Benchmarking of Distributed schemes 

Deliverable D4.1 showed that legacy network management systems are primarily centralized, 
that is, executed and managed from a single entity; additionally, they are mainly controlled by 
humans. It is clear that this arrangement is not scalable, and opportunities for automation are 
limited, as the use cases of D4.1 reported. 

INM relies on distributed functions to enforce reliable self-management features in the future 
Internet. In order to implement such behaviour, some sort of distributed processing is required. 
The research area of distributed network management benchmarking studies the extent at 
which distributed INM effort is beneficial. We believe that there is no general answer for all 
network scenarios. For each network management task, a different level of distributed effort is 
favoured. This concept is shown in Figure 5-1. 

Taking a bottom-up approach, we are testing a few network management test cases, and try 
to locate the "sweet spot"; that is, the optimal point for the extent of distributed effort, 
considering cost-performance tradeoffs. Both qualitative and quantitative metrics are sought. 

 
Figure 5-1 Distributed network management benchmarking 
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The 4WARD project requires us to innovate in two fronts: 

1. Design a new network, the best we can come with, taking a clean slate approach; 

2. Self-management, introducing a high level of automation in management operations 

We believe that it is very difficult to successfully meet both objectives without any real-world 
experience in self-management. Consequently, the study follows a 2-stage approach: 

1. Study of benefits and performances through the following steps: 

 Select a few test cases from existing networks, implementing centralized management. 

 Exploit distributed in-network management, compare the results with the legacy 
centralized method. 

 Establish benchmarks. 

2. Design guidelines for a clean slate solution 

Within 4WARD, we believe this is a preferred methodology to cope with the aforementioned 
complexity, which can significantly enhance the quality of our research. 

We selected three network test cases to study 

 Route protection for reliable networks (scenario 2 of deliverable D4.1). 

 Adaptive data collection in sensor networks (scenario 1 of D4.1). 

 Topology discovery (scenario 1 and 2 of D4.1). 

The remainder of this section discusses each test case, and the conclusion reached. 

5.1.1 Test Case 1: Route Protection 

Route protection is a reliable mechanism, which reserves prearranged backup paths to 
accommodate fast link restoration with QoS. In the event of link failure, the backup link is 
immediately activated, with minimal service disruption. Such schemes are traditionally 
adopted in MPLS-based routing domains and are mainly used for multimedia applications, 
where IP-based routing recovery mechanisms are too slow to react. The protection 
mechanism is viewed as circuit-switched network emulation over packet-switched network and 
it can be applied to self-management capabilities of a generic path 

Preliminary results [71] were presented at the IEEE infocom 2008 mini conference1. 

The Model 

We studied 6 different protection schemes, ranging from fully centralized to fully distributed 
(Table 5-1): 

 Global Recovery (GR): each primary path has one backup path; both paths share the end 
nodes only. Clearly, the setup and management of the backup link is centralized 

 Unrestricted recovery (UR): each primary path may be protected by any number of backup 
paths. Moreover, each backup path may start and end at any point along the primary path, 
and may protect against failure of any number of elements. This scheme can be 
implemented in a partially-distributed manner 

 Local Recovery (LR): a separate backup path is constructed to protect against a possible 
failure of each element along the primary path. Each backup path starts at the immediate 
upstream node of the protected element, and ends somewhere at the tail  

 Restricted Local Recovery (RLR): as in LR scheme, the backup path starts at the 
immediate upstream node of the protected element, but ends at the immediate 
downstream node. This scheme is fully distributed 

 Facility Local Recovery (FLR): backup paths are constructed as in the RLR scheme, 
however, a single backup path protects multiple primary paths 

 Extended k-facility LR (KFLR): Same as FLR scheme, however, multiple (k) backup paths 
are arranged for protection of each element 

                                                
1  http://www.comsoc.org/confs/infocom/2008/tech_prog.html 

http://www.comsoc.org/confs/infocom/2008/tech_prog.html
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Recovery Scheme 

Global Recovery GR 
Centralized  

Unrestricted  
UR Partially Distributed 

 
Local Recovery  
LR Fully Distributed  

Restricted Local  
RLR Fully Distributed  
K-facility Local KFLR Fully 
Distributed 

 
Table 5-1: Protection schemes studied 

We examined and compared the different protection schemes using the following criteria: 

 Throughput maximization: a quantitative metrics, the primary criterion, used to signify the 
number of services that can be granted, given a fixed known network capacity. 

 Time taken for path restoration: which protection scheme demonstrates the fastest path 
restoration, minimizing service down-time. 

 Administrative overhead (a qualitative metric). 

 Robustness: to what extent the protection scheme itself is prone to a single point of failure 
(a qualitative metric) 

The study defined a formal model for the problem, modelling a capacitated directed network, 
comprising sets of source-destination pairs, with bandwidth demand and profit.  

Results and Benchmarks 

The hardness and approximation boundaries for all 4 variants of the problem were studied. 
We presented and implemented efficient heuristics for the various recovery schemes. We 
simulated the problem with sample data and analyzed the results, which are summarized in 
Table 5-2. 

Recovery GR UR LR RLR FLR KFLR 

Throughput Better than LR 

Comparable 

w/ UR 

Best Better than RLR 

Comparable 

w/ UR 

Worst  With K=2 
equal to 
RLR 

Time to 
restore 

Slowest Slow Fastest Fast Fast Fast 

Overhead     Lower 
than RLR 

Lower 
than RLR 

Robustness Single point of 
failure 

Robust Robust Robust Robust Most 

Robust 

Table 5-2: Results of route protection test case 

 Throughput: expectedly, UR scheme shows the highest throughput, as it has no constrains 
on backup path formation. RLR scheme, being the most restrictive, demonstrates worst 
results. LR and GR schemes are comparable with UR 

 Time to restore: LR is fastest, RLR, RLR, KFLR schemes are acceptable, UR is slow and 
GR is the slowest 

 Administrative overhead: FLR and KFLR clearly demonstrate lower system-wide 
overhead, due to the fact that backup paths can protect multiple primary paths. The 
overhead of other schemes has to be further studied. 

 Robustness: GR is prone to a single point of failure, where all other schemes are 
distributed in nature, and thus better in this respect. KFLR is naturally the most robust 
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Considering those benchmarks, LR scheme seems the preferred approach: it show 
throughput that is comparable with the best scheme, it is the fastest to restore, and is robust. 

5.1.2 Test Case 2: Adaptive Data Collection in Sensor Networks 

A sensor network has a limited amount of data collection resources. Depending on the specific 
situation which varies over time, there are several levels of interesting measurements 
(threats). It is desired that sensing resources are assigned dynamically in an optimal manner, 
in order to provide the best information for the specific situation. 

Consider, for example, a monitoring surveillance system, with video cameras. Normally, the 
cameras will be arranged to cover the whole considered area. However, upon the detection of 
a threat in a specific area, close-by cameras should focus on the event, with more viewpoints 
and higher zoom, while still maintaining full coverage. Such change of focus requires dynamic 
allocation of cameras. Similar considerations are appropriate in other examples, such as 
network security systems, or sensor networks for monitoring environmental parameters. 

Preliminary results [72] were published and presented at the IEEE ANM 2008 workshop2
 

The Model 

We defined a formal model for the problem. The model includes a set of sensors with capacity 
definition (what can be measured), a set of targets with severity (what are we looking for), and 
a coverage matrix (which sensor can detect what area). We defined a profit function. Finally, 
we defined the profit maximization problem for the sensor-target assignment. 

We examined and compared a centralized and a distributed approach, under pareto and 
uniform distribution of targets. We implemented a few centralized algorithms, and one 
distributed algorithm. For the distributed scheme, the network negotiates a local leader for 
each sensed target, following agent capacity negotiation with possible pre-emption, and 
concluding with the leaders' assignments of agents to targets. The algorithm is shown in 
Figure 5-2. tsj denotes the time a target tj is revealed for the first time. Leader message used 
to notify the agents about a target leader. Accept and preempt messages are used to respond 
with the availability of monitoring resources to cover a target. Monitor message is used for 

                                                
2  http://www.ee.kth.se/lcn/anm08/ 

 
Figure 5-2: Distributed algorithm for the adaptive data collection 

 

http://www.ee.kth.se/lcn/anm08/
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final assignment of an agent to target coverage. For a specific agent, A and P denote the sets 
of received accept and preempt messages, respectively. 

The research compared both approaches using the following criteria: coverage (what portion 
of targets were monitored), adaptivity, robustness, scalability, and administrative overhead. 
The coverage criterion was actually measured in the research, while the other criteria items 
are for consideration only. 

Results and Benchmarks 

We implemented efficient algorithms for both the centralized and the distributed control. Figure 
5-3 shows the simulated results, comparing the coverage of both the distributed and the 
centralized algorithms. Table 5-3 summarizes the results. 

 
Figure 5-3: Number of covered targets, as a function of total number of targets 

 

Method Centralized Distributed 

Coverage Higher Lower (but comparable) 

Adaptivity Slow Fast 

Robustness Low High 

Scalability Low High 

Overhead Low High 

Table 5-3: Results of adaptive data collection test case 

Clearly, the distributed approach is highly adaptive, robust and scalable, important features of 
the desired solution. The lower coverage and the higher overhead are attributed to the 
rudimentary implementation: this is a first attempt for self-management, which requires further 
study and better implementation. We believe that an optimized implementation of the 
distributed approach can overcome those limitations, showing measurements comparable with 
the centralized approach, and thus, become the method of choice. 

5.1.3 Test Case 3: Decentralized Topology Discovery 

A key part of real-time monitoring is topology learning. Section 3.5.2 discusses the importance 
of topology discovery for INM. The process must be very efficient, in order to provide real-time 
topology information, with minimal/affordable overhead. Intuitively, some sort of distributed 
collaboration seems more effective, and we investigate this topic.  

The Research 

We examine the following current management examples, from which we extract guidelines 
for the clean slate approach, which will be applicable to the GP WP. 
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 A sensor network, with short-range wireless communication. Topology learning is required 
for access of any sensor to the gateway (root) or Mediation Points in general; 

 A large switched Ethernet network, where the knowledge of local links is used to build a 
network-wide view. 

As far as topology learning and distributed network management benchmarking, both 
examples are similar, and require the same solution. Switched Ethernet network is made of 
multiple inter-connected switches. Each switch maintains an Address Forwarding Table (AFT) 
for each port, which is continuously updated. AFTs provide information about addresses that 
are accessible from each port. We aim at learning the topology from AFTs, while minimizing 
the number of queries.  

We employ 2 different algorithms:  

 A centralized approach, in which every member of the Vertex Cover Group (VCG) is 
requested to send its AFTs to the management station, from which topology is learned. 
(VCG is a group of nodes from which all nodes and links are accessible) 

 A distributed approach, where every member of the VCG resolves the topology around it. 
This approach can be taken incrementally; additional VCG members are involved only if 
the full topology is not yet learned. 

Note that the second approach can possibly gather the full topology without traversing the 
whole VCG. VCG identification is an NP-Complete problem, and therefore, heuristics are used 
to identify a VCG that is not necessarily minimal. That means that the VCG has some 
redundancy, and the distributed process might be able to avoid it, thus learning the topology 
more effectively. 

Results and Benchmarks 

Preliminary results show that contrary to our expectations, the centralized approach is more 
efficient: it requires smaller number of queries for the topology learning process. As far as the 
amount of time for the complete learning, the distributed process is much faster, probably 
because portions of the full topology are discovered in parallel. 

We can conclude from these preliminary results the following benchmarks: 

 A tree-like structure lends itself better into a centralized approach; the complete 
information must reside at the root anyhow. 

 Distributed effort exploits parallel processing, thus getting the results much faster; when 
speed of operation is the most important criterion, distributed topology learning is 
preferred. 

 A centralized topology structure requires one or more "super peer" to manage the 
discovery process, and therefore is subject to a single point of failure. The decentralized 
approach is more immune, and is a better choice for emergency scenarios.  

5.2 Self-Adaptation Schemes 

The In-Network Autonomic Management Environment, (I-NAME), is presented in Section 
5.2.1, addressing resource management and resource reservation. Such environment enables 
the network entities to automatically detect the dynamically changing network‘s configuration, 
and react accordingly to the service‘s requests. 

Section 5.2.2 researches collaborative protocols and algorithms for resource optimization in a 
dynamic network, primarily addressing network bootstrapping and network discovery. 

Section 5.2.3 discusses a special network case, a situation-aware self-adapting wireless multi-
hop network. Protocols, required functionality, parameters and metrics are addressed. 

An innovative INM application is presented in Section 5.2.4, which pre-plan and verify 
configuration changes prior to implementing them. The application predicts the possible 
effects of such changes, thereby preventing undesired behaviour and potential failures. 
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Section 5.2.5 researches different paradigms for dissemination of information through events 
in a distributed environment, with no initial configuration. A generic model is proposed, 
supporting existing event correlation techniques, while addressing performance tradeoffs of 
overhead, timeliness, success rate. Design guidelines are derived for INM event distribution. 

A probabilistic management paradigm for solving some major challenges of decentralized 
network management, is proposed in Section 5.2.6. 

Pulse-coupled oscillators, traditionally used for time synchronization in ad-hoc networks, are 
innovatively applied to congestion control in packet networks, and presented in Section 5.2.7. 
Such congestion notification scheme is based on emergent behaviour, which can show faster 
response time in a scaleable manner, without additional configuration or management 
processes. 

5.2.1 INM Environment for Resource Management and Resource Reservation 

Delivering multimedia traffic with QoS guarantees over multi-domains is a major challenge 
nowadays. The domains can be composed by more than one access network, each with its 
capabilities, devices and users. In this context, we defined I-NAME as an environment 
performing in-network management and resource reservation tasks between network 
domains. Working with profiles (aggregated parameter sets), this is flexible to the network 
conditions and users requests. It was designed as an end-to-end solution for managing 
resources, overcoming and accommodating different types of users (in terms of network 
technologies – access and transport). Hence, it is not a signalling mechanism because it 
reacts to the environment context, assisting the functional components (such as ForMuX, 
Vnet) to offer alternatives for a given session. I-NAME is not a routing mechanism, but it 
assists the control plane in order to detect the best path to the destination. This is done based 
on the information objects collected and delivered to each strategic node through exchanged 
profiles. I-NAME was designed based on the clean slate node architecture, acting within INM 
Application level only, but relying on functional components like QoS and/or Routing Modules 
present in any node (at both INM kernel and INM Application levels).  

I-NAME (In-Network Autonomic Management Environment) 

The scope of I-NAME is to exchange dedicated management information between nodes 
through GPs specially established for inter-management. It will not actually reserve the 
resources, but will deliver/collect the information objects to/from any node. According to 3.7.2 
it is supposed that mandatory QoS and routing modules are present in any node. However, 
only the strategic nodes (usually located in mediation points) will be able to perform more 
complex operation such as assisting ForMux to do operational resource reservation and 
management within GPs. I-NAME implementation requires a set of messages exchanged 
between entities placed in INM Application and INM Kernel space. These messages could be 
called profiles if they are applied in QoS, but as I-NAME is a general environment, its 
applications are not limited to the example given hereafter. It is up to network designers to 
involve it in negotiations, neighbour discovery, anomaly detection, event handling etc. by 
simply changing the profiles with proper messages to be exchanged through dedicated 
management GPs. 

I-NAME Application Example: Resource Reservation and Resource Management  

I-NAME defines profiles as aggregate QoS parameter sets (throughput, delay, jitter, packet 
loss, etc.) and gives personalized access (from the user point of view) and optimized services 
(from the network/ operator perspective). I-NAME defines profiles, as the QoS parameter sets 
requested, supported, negotiated, and adopted in the message flow between the INM FCs. 
Considering this, I-NAME defines four types of profiles needed to determine the path cost: (1) 
Requested profile: includes application request for resources, generated by the SN (Source 
Node). (2) Accepted profile: expresses the destination‘s availability for resources announced 
in the requested profile and it is generated by the DN (Destination Node). (3) Negotiated 
profile: expresses the destination‘s possibilities for resources announced in the requested 
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profile and it is generated by the DN. (4) Adopted profile: contains the source‘s availability for 
resources announced in the negotiated profile and it is generated by the SN. I-NAME 
message flow is based on the interaction and decision according to the information included in 
the profiles. The profiles should carry the network‘s capabilities from node to node in the path 
to the destination, but only the SN and DN could choose between different profiles in order to 
have a common view of the application requirements. To demonstrate the I-NAME concept we 
have used the QualNet Developer 4.0 Simulator. The implementation is based on two 
applications running simultaneously in each node: a client (I-NAME Client Application) and a 
server (I-NAME Server Application). On the GP from the source to the destination the 
messages are passing through strategic nodes which recognize and further process the I-
NAME message flow.  

 I-NAME Requested Profile  

Query message 
Query message and 
the Network Profile 

Source Node Network Generic Path  Destination Node 

Query message and 
the Network Profile 

Query message and 
the Network Profile 

I-NAME  
Requested Profile  

 
Figure 5-4: I-NAME Requested Profile message flow 

To add a request, I-NAME Client Application sends a Query Message to the Server 
Application that includes the Requested Profile. The Server Application listens to a well known 
port and it stores a database including all the requests received. On the GP from the source to 
the destination, the network stamps in the Requested Profile its own capabilities. The 
message is define as Query message with network profile, which is the same as the initial 
Query message, plus the network‘s additional influence. This means additional delay and jitter 
by each network segment or bandwidth limitations introduced on that path. We call the path 
specific characteristics as the Path Profile. This could be modified by each network node, 
accordingly to the segment parameters passed by the Query Message through the path. 
Because of multiple paths, each time a new request reaches an intermediate node / strategic 
node, the Kernel forwards the best Path Profile to the next network node. When the 
Requested Profile reaches the destination node (containing the Client Application requests 
and network‘s capabilities mapped into the Path Profile), the I-NAME Server Application 
answers with a specific message. This message is generated in collaboration with the 
destination node, indicating its availability to support the Requested Profile. If the destination 
node answers by an Accepted Profile, it expresses the destination‘s availability for resources 
announced in the Requested Profile. Destination node sends a message indicating the 
acceptance for requested parameters.  

I-NAME Acceped Profile  

I-NAME 
Accepted Profile 

Accepted Profile 
with Network Profile  

Source Node Network Generic Path  Destination Node 

Accepted Profile 
with Network Profile  

Accepted Profile with 
Network Profile

Accepted Profile 
 

 
Figure 5-5: I-NAME Accepted Profile message flow 

If the destination node answers by an I-NAME Negotiated Profile, it expresses the 
destination‘s possibilities for resources announced in the I-NAME Requested Profile. 
Destination node sends a message indicating the available possibilities for requested 
parameters. 
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I-NAME Negotiated Profile  

I-NAME 
Negotiated Profile 

Available Profile 
with Network Profile  

Source Node Network Generic Path  Destination Node 

Available Profile 
with Network Profile  

Available Profile with 
Network Profile

Available Profile 
 

 
Figure 5-6: I-NAME Negotiated Profile message flow 

The answer sent back to the source node records the best path to the destination. Thus I-
NAME assists low level routing (based on low level QoS parameter measurements and 
monitoring), managing in a distributed manner the network resources. 

 

 I-NAME Adopted Profile  

Adopted Profile 
Adopted Profile and 
the Network Profile 

Source Node Network Generic Path  Destination Node 

Adopted Profile and 
the Network Profile  

I-NAME  
Adopted Profile  Adopted Profile and 

the Network Profile

 
Figure 5-7: I-NAME Adopted Profile message flow 

I-NAME Adopted Profile expresses the source‘s availability for resources announced in the I-
NAME negotiated/accepted profile and is generated by the source node. 

5.2.2 Resource optimization 

Network resources are normally shared. An effective and efficient usage of shared resources 
requires the establishment of an optimization mechanism or process. Such process actively 
analyses the variations on the status of the network, providing a way to assist decision and 
allocate resources. Even when it does not directly act over the network, optimization (as an 
INM application) provides hints on the best choices to be made, according with the current 
status of the network, with the prediction of future status of the network and with the context 
requirements. 

Self-adaptation, in the scope of 4WARD, is the capability of each INM node (and therefore of 
the network), to react to changes insuring the proper network behaviour, according to the 
defined management policies.  

The idea is to include in the INM process the policies of the network that will influence the 
user‘s access, and the load balancing in a forecasting basis. Also, one of the novelties is that 
this is done through INM. 

INM Anomaly detection

INM RT Monitoring & 

Threshold detection

INM RT Distributed Fault 

Recovery

INM Situation Awareness

Optimization Process

Reconfiguration Process

Discovery Process
Policies Manager

Self-healing

Access Network Selection

Assisted Routing

modify policies
new policies

policies dissemination

INM Management Kernel

inherent policies

 
Figure 5-8: Self-adaptation and the optimization process 

Figure 5-8: highlights the relations between the optimization processes and other INM 
monitoring applications (blue rectangles). The grey rectangles represent other self-adaptation 
functions. 
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As illustrated, optimization includes the support of local resources optimization (through 
predictive approach) and reconfiguration, access-network selection and assisted routing (as 
optimal path selection). These functions require the ability to discover the nodes, perform 
network bootstrap, and manage entry/leave nodes. 

The relation with the Policies Manager is also of key importance. This allows network entities 
to share the network goals while contributing to their redefinition when they occur, as a 
consequence of the global adaptation mechanism. 

Access-Network Selection is the choice of access technologies (or interface) in multi-homing 
environments. INM can assist the decision process for multi-access, multi-provider, 
predictability of service, etc. This functionality interrelates both with INM Situation Awareness 
and with INM Real-time monitoring and Threshold Detection applications. Network selection 
deals with cross-layer optimizations, such as medium optimization, choice of access 
technologies, inter-provider issues and policies, considering forecasting and decision in a 
long-term basis. 

The self-healing functions of a network are related with protection schemes. On a long-term 
basis, the network continuously adapts avoiding problematic nodes or links before the 
problems occur. On a short-term basis, the network must react to an already existent problem. 
The network and resources optimization functionality will interact with self-healing in the sense 
that it will, for one side, avoid problems in the networks – by predicting them, and for another 
side, if problems occur, self-healing will trigger network optimization with the new 
configurations of the network after recovery. 

Finally, the interaction with network configuration planning is straightforward, since the 
optimization of the network resources and interfaces will provide information on the availability 
of the required resources and interfaces in the network. 

Towards In-Network Resource Optimization 

The characterization and definition of the optimization mechanisms and related distributed 
protocols require a better understanding of network nodes interactions. These interactions are 
based on node characteristics: its type, role and behaviour within the network. A systematic 
classification of a network node is necessary considering not only its behaviour but also its 
supported actions (functionalities) and events. 

The network entity should be the starting point of the definition of the functional management 
architecture. The node architecture must provide a detailed characterization of this entity, 
attending different viewpoints and contexts. Starting on a highly abstract level, we plan to 
increase detail for each entity as we move down in this top-down approach. 

The identification and definition of relevant network information and metrics are also required. 
These metrics, the weight they have on each configurable parameter and their relevance to 
other nodes (sharing) establish a base for distributed decision algorithms and collaborative 
protocols. 

Opposing to the previous strategy, a bottom-up approach can be used as a validating method 
for the conceived models. The definition of a set of progressive scenarios allows the tuning of 
our model, testing some of the developed concepts and validating some of the exposed 
options (more details in the annex A). Simulations of each scenario and their corresponding 
processes will allow us to compare different models, choosing the proper solution for each 
different situation. With this iterative process, the overall model can be simplified and 
complexity can be added without loosing the final perspective. 

Towards In-Network Optimization Model 

Inside a network we can find many different types of resources and parameters. The solution 
to an optimization problem is neither straight-through nor consensual. Parameters will typically 
compete to obtain a local optimal point otherwise the results would converge to a common 
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optimal solution. A network wide optimization process must weight all these parameters and 
conflicting requirements, achieving a compromise solution. 

Whatever criterion is used for optimization, ultimately the allocation of physical resources is 
involved. We can start by referring each node‘s internal capabilities such as available memory 
or processing (CPU) capability. In this case, the optimization problem is (normally) solved 
internally inside the node. Managing such resources imposes limits on the number of running 
processes and the size of the local heap of such processes. To support Vnet, the ability of 
each node to efficiently manage its own physical resources such as CPU and memory is 
required. 

Handling interfaces and links is a wider type of problem. At least two entities need to be 
involved in this case. If we‘re using a wireless shared medium, the number of entities will be 
potentially bigger. In this case, cooperation between such entities is required to solve the 
problem. By cooperation we mean the exchange of each entity‘s knowledge on the network, 
and the iterative and distributed process of decision making. 

Although the configuration of the network directly affects the distribution of the available 
physical resources (such as those referred before), other parameters can normally be 
―optimized‖. Typical QoS parameters such as committed bandwidth, propagation delay, jitter 
and error rate, for instance, depend on the actual physical path taken by each data flow. Other 
technical parameters could be used as an optimization criterion: energy efficiency, used 
spectrum, transmission time, message overhead, etc. The use of specific coding techniques 
(network coding) increases the efficiency of data links and the achieved communication data 
rates combining (sharing) the transmission of different sources. 

The optimizations of non-technical (in a strict sense) parameters take special attention in our 
research. Each actor in the network (the user, the operator or the service provider) could 
define a set of preferences. The total communication cost is an important parameter for the 
user. Equally, avoiding specific paths (for business reasons) could be a major requirement of 
a network operator. A service provider could require, for instance, a minimum security level for 
delivering some data, or a minimum apparent quality (e.g. a video stream). 

Time takes a special place in this list of ―optimizable‖ parameters. Whatever parameters are to 
be optimized, the duration of the whole process is relevant as well as the communication 
delays. Minimization of knowledge dissemination delays and fast decision are main 
requirements for the distributed algorithm, but minimizing the data flow delay is an important 
requirement for the obtained solution. 

All these parameters can be used to define a set of (active) Network Management Policies. 
These policies define a range of values for each parameter and a list of conditions that 
together work towards a desirable operation goal. 

The main component of our model is a local optimization knowledge database (or matrix). This 
matrix encapsulates everything the node has learned from itself and its neighbourhood. This 
initial model for the Optimization Process can be found in the annex. 

Two main types of parameters are identified: metric related parameters and topological 
description parameters. The first group of parameters hold the configurable properties of the 
physical resources as well as the parameters, conditions and restrictions that affects them. 
The second group contain information on the network topology: how many nodes, which 
nodes, who connects to whom and by where. 

Regarding the ownership of the information, knowledge could be local or external, private or 
shared. Local knowledge is an inherent property of each entity. When the entity boots this 
knowledge is implicitly obtained. Local private knowledge will not be distributed to other 
remote entities. External knowledge is obtained from other entities through message 
exchange as part of the dissemination mechanisms of the distributed management protocols. 
External knowledge is necessarily not private (shared) on its source. 
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The scope of knowledge could be partial or global. Partial knowledge is when at least one 
node does not have that information (yet). Global knowledge means the information has been 
shared between all participant nodes. 

Completeness of knowledge can be classified as partial or complete. Partial information 
occurs when some data has not been received or was received with errors. We can calculate 
a probabilistic value for the missing parts. 

Finally, common knowledge is when some information is known to all, and all know the 
information is known to all. 

A distributed protocol is a comprehensive set of rules that define the behaviour of each 
network entity. Each rule sets an action to each possible condition. An action is a ―what to do‖. 
A condition is a ―when to do‖. The previous definition of a distributed protocol could also be 
seen as the definition of a decision process. The distinction between ―distributed protocol‖ and 
―distributed algorithm‖ it‘s thin. 

Our goal is to achieve an efficient distributed algorithm for real-time improvement of network 
utilization and performance. Efficiency is measured in terms of time, communication cost and 
comparison with traditional (centralized) optimization schemes. Each network entity must 
solve a part of the problem based on a partial view (knowledge) of the network conditions. 
Collaboration between entities is required to distribute such knowledge and to enforce, 
confirm or refuse each other decisions. This research is still in progress. We are currently 
working on the process of collaboration of network entities – which information is more 
relevant, which is required, how to deal with incomplete information. A general model has 
being defined and can be found in the annex. Our next step is to use simulation to tune, 
demonstrate and evaluate the model of the obtained distributed algorithm. 

5.2.3 Specific Algorithm: Wireless Multi-Hop Networks 

A specific example of INM is the self-adapting functionality of entities in wireless multi-hop 
networks, such as Wireless Mesh Networks (WMNs), Mobile Ad Hoc Networks (MANETs) or 
Wireless Sensor Networks (WSNs). Traditionally, networks are composed out of clients and 
servers with special network entities in between called routers, which are responsible for data 
forwarding. Unlike to those networks, each node in wireless multi-hop networks also needs to 
provide routing functionality on its own. That directly implies that the efficiency of the whole 
network is based on the collaboration of all nodes and thus each network node must be able 
to adapt its behaviour according to any network changes (e.g. broken routes). However, traffic 
forwarding in wireless networks is very challenging as there arise much more problems than in 
fixed networks paper[94][95][96][97][98].  

Unfortunately, approaches that have been proposed mostly aim at a certain type of network 
(e.g. MANET, WMN or WSN) and just try to optimize and adapt their behaviour within this 
domain. An example for an ongoing research group is the ―Routing Over Low power and 
Lossy networks (ROLL)‖ [103], which just focuses on a subset of application areas, namely 
industrial, connected home/building and urban sensor networks. However, the future Internet 
won‘t be composed of multiple clouds that stand alone for themselves, but are fully 
interconnected. A wireless sensor‘s next hop might be another sensor, but it could be also a 
highly mobile node as well as a TPA (Internet Transit Access Point). What those approaches 
are missing is the ability to combine and adapt between different types of networks even 
expecting different kind of traffic characteristics. High mobility, link and network load, resource 
constraints and even further conditions might directly affect processes such as node discovery 
or the selection and combination of different routing metrics (e.g. ETX [99], MTM [100], EDR 
[101], and WCETT [102]). However, an approach that tries to solve this problem by expecting 
accurate situation information might fail as there is also a difficulty with the inaccuracy of 
situation awareness in wireless multi-hop networks. Figure 5-9 exemplary shows different 
types of networks that will lead to different network conditions and thus points out the need to 
self-adapt according to the given network situation. 
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Figure 5-9: Different types of wireless multi-hop networks 

The intended INM System acts in a distributed way and allows to efficiently share and balance 
resources, discover and repair routes on its own, self-adapt to network changes, care about 
network anomalies and offer a wide range of network state information. Such an INM can be 
the key enabler to offer a localized and overall picture of network state information to each 
network node at the same time, depending on the granularity that is requested. Each network 
entity would know what is going on in the network and thus would be aware about the current 
network situation of a certain area it is interested in and which might directly affect the 
decision for the optimization process.  

 
Figure 5-10: Self-adaptation process 
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The self-adaptation process of a node is exemplarily shown in Figure 5-10. The process 
requests needed data via the Situation Awareness framework. Those data can be also 
interpreted as ―raw situational information‖ of a node and include information like network 
topology, link load or link quality. However, what is really needed to self-adapt to network 
changes appropriately is the situation or context of a node and not any raw situational data. 
Hence, this raw situational information will be used as data basis and analyzed by various 
algorithms and procedures. The outcome of this analysis will be the node‘s awareness of its 
situation which might be reflected e.g. by possible network congestion or link stability.  

Following example for mobility shall give an idea how the analysis might look like. Multiple 
proposals have been made to reflect a node‘s mobility pattern and the most appropriate metric 
seems to be the amount of route breakages as it almost has a linear dependency with the 
mobility of nodes [105]. Hence, the analysis needs to get information about the link 
breakages, which can be derived by continuously requesting network topology information 
from the situation awareness framework and thus realizing any neighbour changes (new 
neighbours arise whereas old neighbours might disappear). What the analysis then finally will 
provide is the information about the node‘s mobility pattern, e.g. almost static, slowly moving, 
etc. The main adaptation process will be done afterwards by analyzing the derived situation 
information and changing appropriate parameters. Appropriate metrics will be adapted for 
instance to combine and weight different routing metrics (e.g. A (ETX), B (Stability) and C 
(Less Hop Count)) and thus available network resources can be optimized when a node‘s 
situation changes.  

Moreover, the Self-Adaptation Process for resource optimization might also directly influence 
the topology computation and thus the offered situation awareness information by changing 
the broadcast interval and broadcast range (number of hops) for neighbour detection or even 
the routing protocol itself (e.g. from pro-active to reactive approaches). Figure 5-11 
exemplarily shows how metrics could be adapted and weighted in case of node mobility, 
though such adaptation should be not just restricted to node mobility, but at least also include 
parameters as network load and resource constraints. 

 
Figure 5-11: Example for metric weighting according against mobility 

There is also some work done in WP5 that target towards wireless multi-hop networks. 
However, the difference between the approaches is that WP5 mainly concentrates on 
developing new metrics that are interference-aware or deal with grid computing in a wireless 
multi-hop environment, whereby work done in WP4 mainly targets at the self-adaptation 
property of network nodes that change their behaviour and even might change used metrics 
according to a given network situation. It is expected that simulation results will give an 
impression how metrics are affected when a node‘s situation changes, which also might 
change implicitly by means of situation changes of its neighbouring nodes. Moreover, it is 
anticipated to get a clear indication about the needed adaptivity for the dissemination of 
topology information (e.g. in case of mobility or congestion). By continuously adjusting those 
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parameters we hope to improve the overall route quality, network stability, and scalability and 
this way increase the whole network throughput. 

5.2.4 Network Configuration Planning and Verification Functionality for INM 

Traditionally, the planning of activities on an operating network (like configuration changes, 
upgrades and so on) has been an important part of network management. We believe that 
INM should include mechanisms that support these operations, based on the intelligence that 
is pushed inside the network, according to the INM principles. 

The aim of the work described in this section is to investigate the possibilities of embedding 
configuration planning functionality into in-network management. We propose to have 
mechanisms inside INM that support the pre-planning of network configuration changes 
before actually performing them. Besides planning of the configuration changes that are going 
to be committed to the live network, we also propose a functionality to verify the potential 
effects of these configuration changes. 

It is also a goal to investigate how the network administrator (or end users) would, despite the 
automation, still interact with such a system to perform network administration and planning 
tasks on a ―higher level‖ compared to today. It is quite likely that operators will still want to 
have a control terminal in the NOC, displaying the overall network status, and allowing 
interventions when necessary. This section aims to present a problem statement and a 
possible scheme for planning network operations in the future INM-enabled networks. The 
goals for future work are the study of possible implementations and evaluation (feasibility, 
performance). While it is another important topic, this study does not cover the initial planning 
of a network. 

The self-organizing behaviour proposed for INM has some clear benefits compared to 
traditional network management. It is probably safe to assume that INM will have a predictable 
behaviour in reaction to different events in the network, however, the expected behaviour 
should be known also to the operator or the user, who might not be familiar with the internals 
of the INM implementation. The expected response of the network to changes should be 
known before any changes are applied, especially if the desired changes could cause 
problems or undesired effects. A change in the network could mean anything: connecting one 
or multiple new nodes, adding/removing links or changing their properties, changes in the 
network topology or in the nodes, etc. But changes could also be not hardware-related, for 
example changes in network policies or in resource allocations. Basically, to all the possible 
actions on the network from the operator/user that INM is designed to handle, it should be 
possible to predict the expected outcome, since it is the INM mechanisms inside the network 
that react to the changes. 

Fully automatic reconfiguration might not be desirable in all situations: there could be 
scenarios where due to some changes in the network the self-organizing mechanisms could 
cause unstable behaviour like load transients or oscillations, even if only for a short transitory 
period. Moreover, a certain resistance towards fully automated systems can be observed. 
Operators‘ fears towards such systems are due to the existing risk that they could lose control 
over the system. Another valid concern is that bugs can severely cripple such automated 
systems (even more if they are distributed) The administrator or operator should always have 
the possibility to control the self-adapting behaviour: it should be possible to change 
parameters of the INM self-configuration, override some default actions, or even disable some 
INM functions, if it‘s needed. In general, we believe that the operator should be able to control 
the degree of automation / autonomy of an INM-enabled system and should be aware of 
potential undesired effects with the aid of INM mechanisms. 

Network Configuration Planning in the INM Application Space 

Network planning is considered to be a separated network management function, according to 
the classification based on the degree of embedding described in Section 3.3.  
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From the real-time / non real-time classification point of view, network planning functionality 
can be imagined in both. In the NRT case, the prediction of the effects of changes would not 
take into consideration the real-time parameters of ongoing sessions in the network. This is 
certainly the simpler case. In the second case, real-time parameters and ongoing sessions are 
also considered, so the effects of planned changes in the network also include effects on the 
ongoing sessions. Planned, and later, applied changes in the network could also affect 
ongoing active sessions, not only the overall state of the network. If a planned change could 
have an undesired effect on ongoing communications (e.g. interruption, delay/jitter outside the 
agreed QoS limits) this must be signalled in advance. In this case, the task becomes certainly 
more complicated, we could call this case ―Advanced Network Planning‖. 

Architecture of the Network Planning Application 

Figure 5-12 shows a basic architecture for the Configuration Planning Application, and the 
entities it interacts with. 

The Network Planning application will communicate with other entities through the I-NAME / 
INMP protocol. These entities can be: 

 Applications the planning application depends on, running either on the local or on 
other nodes. Since the communication is handled by I-NAME, therefore the location of 
the peer applications (on the local node or on remote nodes) is not important. 

 Other instances of the Planning Application, running on other nodes. 

 External entities, mainly the operator, who is using a management application. The 
management application supports and uses I-NAME. 

 The INM kernel, through the INM Services. 

 

 
Figure 5-12: Architecture and external interfaces of the Network Configuration Planning 

application 
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Network Planning Operations 

When changes are needed to an already operating network, the network administrator should 
be able to plan the changes by interacting with the INM functions through a Management 
Application. The interaction should include the following steps and will manipulate three main 
pieces of information, as shown in Figure 5-12. 

 Analyzing the current configuration and state of the network, including its operating 
parameters, especially any performance problems, anomalies or undesired behaviour. 
These data should be obtained from the Situation Awareness and Anomaly Detection 
functions and will be displayed by the Management Application. 

 Introduce the planned configuration changes through the Management Application. This is 
not a complete configuration for the network, just changes which are planned to be 
executed. It does not include state information. 

 Receive a response from the INM planning module with the predicted results of the 
changes. The operator can inspect the result using the Management Application. This 
information includes the network state information which could result after the 
configuration changes in the planned configuration are applied. These data are provided 
by the Prediction module, which could employ different methods to produce them: 
simulation or prediction based on previously learned data. 

 Depending on the response, the administrator or operator can choose to apply the 
changes or repeat the planning process and create a new planned configuration if the 
results are not acceptable. In case the new configuration is applied, the Management 
Application will send this command to the Planning Application, which in turn will apply the 
changes via the INM Services. 

These operations can be considered an enhancement of the original NM control cycle with an 
additional small control and verification loop, as shown in Figure 5-13. 

 
Figure 5-13: Classical and enhanced INM control cycle 

5.2.5 Event handling in INM 

Automatic configuration of basic functions of the INM entities is an important feature to enable 
plug-and-play feature in 4WARD. Distribution of events between nodes is one of the basic 
functions that support other management functions. A typical event can be an exception 
reporting the anomaly detection described in Section 6.2, a failure in general, or any 
information which needs to be distributed in an asynchronous manner. In the traditional 
network management approach, events are generated on the network nodes and reported to 
a central manager, which normally executes a root cause analysis engine. The relation 
between monitored nodes and management station in is normally statically configured.  

When moving to the INM paradigm, the management logic is not concentrated on a single 
manager and nodes themselves can process events generated by other nodes, handle 
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events, trigger self-optimization mechanisms or reporting the problem to a human operator. 
However, having assumed that a management component can generate an event, a 
mechanism is needed to define how such event can be forwarded to other nodes. Specifically, 
it has to be determined which other node can act as a sink of events and has the capability of 
correlating events or handling them. 

We defined a generic framework, on which a complete distribute event handling mechanism 
can be built, which includes elements with the following roles: 

Event generator: it generates events to be sent to another location of the network. Any 
4WARD component has the capability of generating events. Referring to the SNMP 
framework, this role is similar to an agent. 

Event handler: it handles events for two purposes: (i) filtering and aggregating events; (ii) 
correlating events through correlation engines. This role can be taken by any correlation 
engine presented today. 

Optimizer: it receives an event to generate an action. Normally the event received is the result 
of previous elaborations and is here named Root Cause, to indicate that the cause creating 
the warnings in the network has been identified. The action taken by the optimizer is related to 
the specific root cause identified and aims at either optimizing the performance or reacting to a 
fault in order to heal the network. This role can be taken by any healing component in today‘s 
networks. 

User Interface: it receives an event and displays it to the administrator. 

Algorithms for Event Distribution 

Given one or a set of devices acting as generators, we need to deliver the events to the 
proper location and guarantee that the events are properly handled. We assume the following: 

(i) an event generator does not know in advance the proper destination of an event; 

(ii) different event handlers can be used for the same event; 

(iii) associations between generators and handlers are not unique and stable over time; 

(iv) the output and the timing of an event handler is constrained, but unpredictable; 

Assumptions (i) and (ii) reflect the distributed nature of the architecture, in which no central 
manager is present and processing logic is distributed on different nodes. Assumptions (iii) 
and (iv) imply that an event generator should be able to contact different handlers and that the 
same handler can produce different results. 

Following the initial study on benchmarking of distributed architecture, two main approaches 
can be followed in order distribute an event in the framework: sequential and parallel.  

In the sequential approach a generator is allowed to select as destination for an event only 
one of the available handlers. Different criteria can be used to select the best handler given an 
event of a certain type. The most straightforward way is to select the one for which the 
network delay is lowest, to achieve timeliness. However, other techniques can be based on 
past experience, taking into account the success rate measured for previous events. We 
assume that a handler sends back a reply, according to the result of its processing rules. If a 
negative reply is received, a generator needs to select another destination. In the worst case a 
generator needs to try one by one all the handlers. This might be time consuming and 
therefore not satisfy timeliness requirements. 

The parallel approach attempts to reduce the total time required to find the proper handler. A 
generator can send the event to more than one handler at the same time; duplicate 
processing can be avoided through the self-organization structures of Section 3.5.3. The 
maximum number of destinations, n, is a parameter of the algorithm. Clearly, the higher n, the 
more is probable that one of the chosen handlers is successful. The drawback is that the 
traffic generated can be very high and the network can be flooded with events.  
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We introduced a model that aims at treating the correlation engine as a ―black box‖, meaning 
that any technology specific correlation engine can be modeled with this black box with certain 
levels of fidelity. 

We assume that the output of the reception of an event can be a success or a failure, 
considering the ability of generating a root cause as a successful elaboration. The result of a 
correlation engine is not always fixed, but it depends on the conditions of the network. For our 
purposes, we are not interested to know which root cause would be produced for which event, 
but only if a root cause would be produced. Therefore, we assume that an engine can receive 
a certain set of events, and there is a certain probability of success upon reception of an 
event. Further details are available in the paper [93]. 

Simulations and Results 

We have implemented event distribution mechanisms using the OMNeT++ simulator, 
developing the modules Event Handler and Event Generator. We set up a reference topology 
with 6 event handlers with different network delays. We ran simulations with two different sets 
of values for the probability of success of the event handlers: a homogeneous scenario in 
which all handlers are characterized by the same probability and a non homogeneous one in 
which closer handlers are characterized by lower probability. 

Table 5-4 shows average results both in the homogeneous and non-homogeneous scenarios. 
Results are shown for the sequential case and parallel case. In the parallel case, we varied 
the maximum number of destinations an event can be sent to at the same time, from 2 to 6. 

Looking at the distribution of the completion times, as shown in Figure 5-14: for the 
homogeneous scenario, it can be noticed that in the sequential case times are more 
distributed towards high values, whereas they shift towards lower values in the parallel cases. 

 Homogeneous scenario Non homogeneous scen. 

mode 

completion 
time (avg), 

ms 
traffic (avg), # 

messages 
completion 

time (avg), ms 
traffic (avg), # 

messages 

sequenti
al 111.1 1.9 417.3 3.4 

parallel 2 37.3 6.0 218.9 10.3 

parallel 3 28.9 11.1 173.7 18.0 

parallel 4 29.7 14.3 171.8 21.8 

parallel 5 31.4 16.3 161.9 25.2 

parallel 6 29.1 17.9 159.0 26.0 

Table 5-4: Completion time and traffic results of simulations with 1000 events generated and 
computational capability of 10 events 
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Figure 5-14: Completion time distribution, homogeneous scenario 

When looking at the results about completion time and traffic consumption, it is clear that a 
trade-off exists between the two metrics. The completion time with a parallel approach results 
much lower with respect to the sequential approach. Sending the event to multiple handlers 
increases the probability that one of them is able to handle it with success. Increasing the 
number of destinations can decrease further the completion time. However, the parallel 
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approach has the evident disadvantage that the traffic generated increases linearly with the 
number of parallel destinations. The trade-off between timeliness and traffic consumption 
cannot be resolved, but necessarily the expected behavior of the system should be defined in 
the governance process of the INM framework. In addition, we propose that nodes support the 
different distribution mechanisms, and they should be able to switch from one to another on 
the basis of network conditions or requirements. 

In the histogram in Figure 5-14: we notice the presence of high values, approximately 
between 400ms and 1400ms, especially in the sequential case. These correspond to the 
occurrences in which all handlers fail in the correlation process or the proper handler is the 
last in the sequential chain. Such high completion times might not satisfy timeliness 
requirements that are characteristic of certain events. Therefore, we suggest including inside 
an event an expiration time, after which the distribution process is stopped and a negative 
reply is sent to the generator. This would avoid unnecessary traffic and a generator would be 
informed soon about the impossibility of handling the event and could take further actions 
accordingly. 

Figure 5-15: shows that the limitations of computational capabilities tend to saturate the 
performances of the system. The sequential mode is more resilient with respect to these 
constraints, while the parallel mode tends to saturate the system faster. Under very 
constrained configuration, the disadvantage of consuming more traffic is not compensated 
anymore by the gain in time. This might not be an issue when considering a small scale 
network or a single service; nevertheless, when considering performances of a large scale 
service network, it should be taken in account that a certain planning of the computational 
resources is required and mapped properly to the parallel distribution mechanism, in order to 
guarantee performances of the fault management process. 
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Figure 5-15: Completion time in relation to computational capability, homogeneous scenario 

5.2.6 Decentralized Probabilistic Management 

This work proposes a probabilistic management paradigm for solving some major challenges 
of decentralized network management. Specifically, we show how to cope with 1) the 
overhead of redundant information gathering and processing, 2) the decentralized 
management in dynamic and unpredictable environments, and 3) the considerable effort 
required for decentralized coordination of management functions. 

To this end, we describe a framework for probabilistic decentralized management in the 
context of INM. We demonstrate how this framework can be applied to a network of 
information, a novel clean slate approach towards an information-centric future Internet. We 
show by means of a simulation study in the area of performance and fault management that 
we can significantly reduce the effort and resources dedicated to management, while we are 
able to achieve a sound level of accuracy of the overall network view. 

Since management functions are in many cases redundant across the network, we propose to 
turn them on or off randomly. At one point in time, thus, some functions are turned on, while 
others are not. The specific way of how the activation of management functions is realized 
may depend on additional system constraints and performance tradeoffs. If all functions that 
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are subject to the probabilistic management process are instantiated and resident in the 
memory of the networked device beforehand, rapid switching between on and off states is 
possible, which allows fine-granular probabilistic control. It is also conceivable to include the 
installing and uninstalling of management functions in the randomization process, for instance, 
if constraints in the transient memory of the networking device apply. While memory resources 
are conserved, CPU utilization increases and more coarse-grained turning on and off is more 
advisable. In general, different tradeoffs between the cost of activating and deactivating a 
function and resource savings are possible. For ease of discussion and without loss of 
generality, we assume in the following the first of the discussed alternatives. 

By control and management functions, we refer to classical functions including, but not limiting 
to, fault, performance, and configuration management. Note that by ―random‖, we refer to any 
type of randomness, including pseudorandom and perfectly random processes. While perfect 
randomness is difficult to achieve with today‘s technology, pseudorandom behavior, 
implemented by popular random number generators, is absolutely sufficient for our 
applications. 

Figure 5-16 illustrates the basic layout of our probabilistic management framework. A set of 
management functions is running on the node, interacting with the networking functionality 
directly or through the node‘s database(s) or information store(s). A component called the 
Randomization Process designates the meta-management entity that takes care of 
randomization of the management functionality. The randomization process can be influenced 
through various factors and might be configured from an external entity. 

Network Functionality and Resources

Randomization 
Process

Node External
Configuration

Set Func 
(on/off)

Node Internal 
Values (X) INM Framework

Meta Management

External Configuration 
of probabilistic behavior

 

Figure 5-16: Basic probabilistic management framework (node view) 

The randomization process on the network element has a probability function fi with a certain 
probability distribution per management function on the node (cf. Figure 5-16:). An interval Ii 
denotes the interval between two successive executions of the randomization process for a 
certain function, which can be fixed, dynamic, or random. Each time the interval Ii elapses, 
function fi decides whether or not a function is turned on or off. Both probability function and 
the interval may depend on configuration, type of function as well as configuration and internal 
information. In a special case, those values might also depend on information about 
neighboring nodes. However, such models introduce additional, more complicated 
dependencies again, which we attempt to minimize with the probabilistic scheme in the first 
place. 

Evaluation in the context of Network of Information 

We have implemented parts of the INM framework in a Java-based simulation environment 
and added functionality for creating and running probabilistic decentralized management 
scenarios. We are able to dynamically add management functionality to a node, which is in 
turn automatically added to the randomization process handling the respective function. The 
probability distributions can be parameterized dynamically by setting a specific random 
number generator in the randomization table. 

We apply the probabilistic management framework to a future Internet approach called the 
Network of Information (NetInf) [4]. Motivated by the fact that users are more interested in the 
information, rather than the individual nodes storing the information, NetInf defines a new 
information-centric paradigm. Rather than building on the networking paradigm of node-centric 



  Document: FP7-ICT-2007-1-216041-4WARD/D-4.2 

Date: 2009-03-31 Security: Public 

Status: Final Version: 2.0 

 

4WARD PUBLIC INFORMATION 90(138) 

 

communication, NetInf exploits information-centricity to connect and relate information 
elements with one another and to directly build dictionary and management structures on top 
of these elements. The essence for our purposes is that NetInf provides a global distributed 
information store, where applications publish information and are able to query information 
from the system.  

In this scenario, we study the effects of probabilistic management in a well-balanced setting in 
order to understand the effects of the approach in common situations. In the simulations we 
monitored various values including the number of API requests for retrieving and publishing 
information, internal cache size, number of transport requests etc. We divided the overall 
monitoring task into two functions, each of which can be turned on or off randomly. One of the 
functions monitors the API requests from applications; the other reads data that is gathered in 
the NetInf system anyway for internal use. 

We considered the value of the number of API information retrieval requests. When 
extrapolating the monitored values to the overall network and monitoring time, we have the 
same average number of information requests per node independent of the probability of 
running the monitoring function. The average amount of data gathered per node, however 
naturally decreases with smaller probabilities (cf. Figure 5-17), therefore less monitoring 
instances are running in the network. This is as expected in a system with equally distributed 
activity.  
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Figure 5-17: Standard deviation and amount of monitoring data gathered. 

However, as shown in Figure 5-17, the standard deviation across all simulation runs differs 
with the probability of running the monitoring function. This means that the extrapolated data‘s 
accuracy is smaller than when all monitored data is considered. We observe, however, that 
down to a probability of just 0.3, which is equivalent to the running of only about one third of 
the monitoring functions, the standard deviation only changes insignificantly. This underpins 
the ability of probabilistic methods to achieve accuracy levels that are similar to ideal methods 
in the scope of network management. Note that the standard deviation is not zero since the 
there is also variability through the random generation of the network load. 

The next set of simulations is concerned with fault management functions. We define a fault 
as the situation where a node is down and hence, unreachable for responding to object 
information retrieval requests. We detect a node failure when another node attempts to 
retrieve an object from the failed node, but was not able to do so. We do not differentiate 
whether such a failure is due to a network or a node problem. Note that there are several 
different ways of doing fault management. For simplicity, we restrict the following discussions 
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to only one possible way that we use to analyze the suitability of the probabilistic 
management. 

For the following simulations we continue to use the previously stated NetInf setting. We 
randomly choose 100 nodes which at a random time during the simulation fail for a duration of 
2 seconds. We have chosen this value because it denotes the boundary where failed nodes 
are showing up in the form of information retrieval errors. If the failure duration is shorter, there 
is a set of failed nodes that are not detected, since no information retrieval requests destined 
for that node fall within the failure window. However, Figure 5-18 shows that also for a 
probability of 100% to run the fault management functionality, a small number of node failures 
are still not detected by the NetInf. In order to also detect these failures, targeted fault 
management would be required that actively checks the nodes‘ mutual reachability. 
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Figure 5-18: Fault detection 

Regarding the probability-based detection of faults, Figure 5-18 shows that the fraction of 
detected faults is fairly small down to a probability of approximately 50%. This observation is 
true for both the balanced and unbalanced setting, which are both shown in the figure. 
Furthermore, even at a probability of only 10%, it is still possible to detect about half of the 
occurring failures. Note that the resource usage decreases linearly with the probability to run a 
management function. 

Comparing the balanced and unbalanced case, the latter shows only a slight decrease in the 
ability to detect node faults and the standard deviation thereof. This confirms that the 
probabilistic management paradigm is not only applicable for homogeneous scenarios. It also 
tolerates inhomogeneous load models and is able to achieve high accuracy. 

5.2.7 Congestion Control 

A network is considered as congested when too many packets arrive at the same router‘s 
queue, resulting in an amount of packets being dropped. To avoid a congestion collapse 
congestion control is essential. Unfortunately the ‗obvious‘ ways to implement a window-based 
end-to-end transport protocol as TCP can result in exactly the wrong behavior in response to 
network congestion. To realise congestion control for future networks in 4Ward we therefore 
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address the task of congestion control inside the network as an integral part of in-network 
management. Historically, congestion control was considered to be addressed by the end-
system in accordance with the design philosophy of the end-to-end principle. With the 
dynamics introduced by mobility and the enhanced processing capabilities emerging with next 
generation networking technologies, these arguments need to undergo substantial revision. 
Congestion control is a functionality, which should be moved into the network for higher 
efficiency and better service quality; and local congestion handling becomes an application 
that can much profit from the INM paradigm. 

Local congestion handling is based on control procedures at the routers to prevent, handle 
and notify congestion. The Internet research differentiates between: 

 Local or ―dual‖ congestion control supported by the routers based on collection and 
evaluation of router traffic information  

 End-to-end or ―primal‖ congestion control integrated at the sender to control the 
sending rate or window size (RFC 2914 [78] ,TFRC [79], RFC 4828 [80], [81], [82], 
[83], RFC 3742 [84]. The local and end-to-end approaches can be combined 
dependent on the requirements and infrastructure. In the Internet community, the IRTF 
Internet Congestion Control Research Group (ICCRG) and IETF Congestion and Pre-
congestion notification Group (PCN) are focussed on development and standardisation 
of congestion control technologies. A comprehensive survey of approaches for 
congestion control in packet networks is found in [81]. 

Congestion Control Based on Emergent Behaviour of Pulse-Coupled Oscillators 

Majority of congestion control approaches are based on packet dropping strategies. While 
taking such strategies into consideration, for 4Ward our aim is to go a step further by adding 
support for redirection of traffic from congested areas in the network. As a prerequisite an 
interaction between congestion control and routing is required. To reduce management and 
configuration complexity of a resulting in-network congestion control with a tight coupling to 
routing we have a strong emphasis on emergent behavior based principles.  

An example for emergent behaviour is the spontaneous phase synchronisation of pulse-
coupled oscillators, which is a well known phenomena in biology and physics [74][73]. In 
Figure 5-16 we provide an abstract model of oscillators as introduced by Mirello and Strogatz 
in [73]. In their model a single oscillator is characterized by a concave status function f(t). For t 
growing from 0 to T, the function f describes the charging of the oscillator up to a maximum 
voltage VMAX=f(k*T) (k=1,2,3,…). In case an oscillator is charged up to VMAX it sends a pulse of 
energy to all oscillators in its environment (i.e. it fires), sets it charging level to 0 and starts 
again the charging process. At the same time, the energy emitted increases the charging of 

 
Figure 5-19: Oscillator model of Mirello & Strogatz 
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each other oscillator by a predefined amount , shown in the right side of Figuer 5-16.  

A result of the work of Mirello & Strogatz is that each group of identical, pulse-coupled 
oscillators following their model reaches a state where they have synchronized their phases 
(up to a set of measure zero). A further property of such oscillators is the fact that in case the 
frequency of one oscillator is (up to some extend higher) it increases the group frequency to 
its own Error! Reference source not found.. An application of this synchronisation property 
to networking problems is of interest because of the following reasons:  

 The observed synchronisation property is based on emergent behaviour. No additional 
configuration or management is required.  

 Once archived, synchronicity corresponds to a stable equilibrium. 

Recent research in the networking area has investigated in the question if pulse coupled 
oscillators can be used e.g. for time synchronisation in Ad-Hoc networks Error! Reference 
source not found.Error! Reference source not found.. In contrast to this work we focus on 
the question: ―Can pulse-coupled oscillators be applied to congestion control in IP based 
networks‖. To approach this, we follow a two step approach:  

Step 1 

We start by identifying the filling level of router queues with the frequency of oscillators 
following the Mirello & Strogatz model as illustrated in Figure 5-20. 

 
Figure 5-20: Approach and coupling of routers (simplified view) 

With a first set of experiments we analyse the effect of network transmission delays in case of 
groups of such oscillators distributed in the network. Since the network topology used to 
interconnect oscillators plays an important role, we will further analyse the impact of different 
network topologies interconnecting the oscillators.  

As the result of the experiments we will obtain practical experience with regard to optimal 
parameter selection for the oscillator internal mechanics as thresholds, charging curves and 
fire capacity for real networking scenarios. In addition we collect a reference set of topologies 
to be used to interconnect oscillators as well as information with regard to their properties. 

Step 2 

In a second set of experiments we evaluate the impact of coupling strength and frequency 
changes to the synchronisation phenomena.  
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Figure 5-21: Congestion notification based on frequency change 

The target is to derive coupling strategies allowing to realise frequency changes with limited 
scope as shown in Figure 5-21. In case of a high congestion level, the frequency change of 
one oscillator causes a local frequency change in its direct neighbourhood. When used for 
congestion notification, the frequency information allows to route around congested network 
areas as illustrated in the right side of the figure. 

5.3 Lessons for INM, Clean Slate 

The test cases discussed in Section 5.1 provide us with useful guidelines that are applicable 
for a clean slate approach. 

It is apparent that in order to implement self management, some level of distributed effort is 
required. In the absence of a "supervisor", network elements have to collectively take 
responsibility and action for network management. 

The extent at which distributed processing is exploited depends on the problem being solved, 
the network environment, and performance tradeoffs. In some cases, a large group of network 
elements collaborate, addressing a larger area of the network. In some other, distributed effort 
is recommended at higher granularity, forming a larger number of smaller groups, each of 
them self-managed. Furthermore, the formation of such groups is highly dynamics. Nearby 
network elements might be added to one or more ad-hoc groups as needed. 

Performance tradeoffs considered are the following: 

 Scalability: a distributed self management arrangement is more scalable than a 
centralized (or less distributed) one. Higher granularity of self-management, resulted 
from forming smaller groups of collaborating neighbours, provides a more scalable 
solution. 

 Robustness: As distributed self management is exploited, a larger number of smaller 
groups of nodes are independently implementing the self management tasks. Clearly, 
such arrangement is more robust; a failure affects the self management performance 
of a smaller area of the network, while other collaborating groups are still functional. 

 Adaptivity / response time: A more distributed arrangement facilitates a faster self-
adaptation. It is easier and faster to detect a property (or threshold), when the number 
of participating network elements is smaller. Each collaborating group is independent, 
thereby adapting autonomously to the changing conditions faster than if it were 
handled by a central management entity. 

 Functionality. There is no clear guideline. Depending on the problem being solved, 
and the network environment, a different level of distributed effort might be preferred. 
For example, when network-wide throughput needs to be maximized, a more central 
approach might reach better results, configuring all the elements in a coordinated 
manner. This, of course, can be achieved only at the expense of other performance 
tradeoffs. Functionality is sometimes the most important feature, and we might be 
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ready to pay the price that comes with it. In most cases, however, we want to find an 
acceptable balance between the expected functionality and the benefits materialized 
by exploiting distributed effort. 

Sometimes, however, better functionality is reached with more distributed effort. In 
such cases, clearly, we can enjoy all benefits. 

A tricky question is which self management functionality lends itself better in a 
distributed environment. Generally speaking, when the management problem has 
local scope, it is better handled in a distributed manner (e.g. local re-routing, due to a 
link failure). If the problem cannot be divided into somewhat-independent regions, 
then it might require a more centralized approach. 

 Overhead. There is no clear guideline. Clearly, the distributed approach entails higher 
overhead at the setup stage (i.e. more messages and processing effort, forming and 
adjusting the collaborating groups). However, once distributed, the problem might be 
solved with less overhead. Our test cases are really the first attempt to implement self-
management in a distributed manner. Consequently, the implementation is 
rudimentary, and there is a lot of room for improvement. We did not gain sufficient 
experience in this area to form a conclusive guideline. 
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6 Interworking with other Work-Packages 

INM has diverse potential relationships with other work packages. There are five specific 
relationships that have been considered to be particularly interesting and selected for more 
detailed analysis and work: 

a) How INM architectural constructs relate to the architecture proposed in New APC 
when specifying the components which will enable the networks of the future. 

b) Using in-network management for supporting Generic Path mechanisms. This is 
described in Section 6.5 on INM instantiation with a focus on QoS and information from 
hardware layer for GP purposes. 

c) Applying self-management to WP6‘s Network of Information [16]. 
d) Using WP6‘s Network of Information mechanisms for INM purposes. This is described 

as one candidate approach in Section 3.6 on data storage and retrieval. Additionally, 
the joint Task TC46 is elaborating on this concept. 

e) Application of INM to management of Virtual Networks (VNETs).  

While (a) and (b) show how WP4 can be useful for other work packages, (c) shows the 
opposite, i.e. what WP4 may use from another work package (WP6). Thus, both directions for 
interworking of WP4 with other WPs are considered and described. The interworking with 
NetInf (WP6) has been investigated more in detail, because a dedicated Task has been set up 
in the project. 

6.1 Architectural Components for the Networks of the Future (WP2) 

WP2 is exploring the development of a design process for combining existing, or specifying 
and generating new networks with customized architectures. WP2 proposes two main 
architectural constructs which aid them in their task: a Stratum and a Netlet. 

A Stratum is composed by a set of Nodes that are connected through a medium. The stratum 
encapsulates a set of functionalities that are distributed through the nodes. There are a 
number of different stratum types defined: governance, knowledge and horizontal. 

The basic building block of the Nodes is the Netlet that provides the basic functional blocks 
that allows the instantiation of the functionalities inside the Nodes. They can be considered as 
containers that provide a certain networking service. The Netlet has two main sections, a data 
related one and a control related one. 

Table  attempts to map the WP4 architectural constructs to the two WP2 constructs specified 
in the previous paragraph. The WP4 high level constructs are listed first (Bold) and then any 
missing WP2 constructs (Bold) are listed and mapped. Figure 15 gives a visualization of the 
mapping to aid understanding. 

 

WP 4 WP2 Comment 

Self Managing Entity Stratum The stratum may be one instance or a stratum which 
contains other strata. These strata are horizontal 

strata. To keep in mind the governance stratum will 
cut down vertically through this mapping. The SEs 
may be atomic of may be a full composition of SEs. 

This mapping may not be exact but there is a 
relationship between these two constructs. 

Functional Component 
(with both service and 

management) 

Netlet Both are containers which reside on a node and 
handle data (i.e. service) and management 

functionality. 
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Management Capability Functional Block 
(relative to control) 

Management logic. 

The logic associated with 
the service interface 

inside the FC 

Functional Block 
(relative to data) 

INM doesn‘t specify service logic explicitly in the FC, 
but if the FC has a service interface, it is implied that 

logic exists to handle this. 

Maps to a slice which 
includes all SEs that 

expose an organisation 
interface 

Governance 
Stratum 

This is the enabler for management objectives to be 
pushed into the system. 

Maps to a slice which 
includes the MCs which 

implement the monitoring 
and situation awareness 

algorithms 

Knowledge Stratum The monitoring and situation awareness algorithms 
are data sources which provide knowledge for the 

system. 

Dedicated INM Entity Control Netlet There may be a part mapping here. Both constructs 
have no link with a service (i.e. data) they are only 

concerned with management (i.e. control) 

Table 6-1: WP4 – WP2 Mapping of Architectural Constructs 

6.2 Storing Management Information as Information Objects (WP6) 

How can the concept of information objects, consisting of indirection (i.e. naming/addressing 
mapping or resolution) provided by NetInf, and storage/retrieval be used for decentralized, in-
network management? NetInf allows creating more or less persistent information objects via 
an API, which are then accessible via an indirection and resolution mechanism. For the 
storage part, two options are possible:  

 either the NM or network state information is stored either on the network nodes that 
produced them, and in that case, NetInf is only used to create a NetInf representation 
of the real object; 

 or, the information object is itself handed over to NetInf, which then in addition to 
provide the mappings, takes care of the storage task, on nodes that it determines itself. 

 For retrieval of the information object(s), it is also possible that a only the search of the node 
where the objects are hosted is part of the NetInf, or that dedicated transport mechanisms are 
used to get the data object to the requested place in the network.  

We have suggested to separate the data handling from the management part and procedures. 
We will now sub-group the types of data that usually occur in NM. Separation of the overall 
NM data can help to analyze how and where the concept of information objects can be 
applied in a beneficial way. The typical control loop involves data that could be seen as 
separated into at least three groups for our purpose:  

(1) control commands, which are many times just modelled as information objects, but could 
get made available with other mechanisms (not available in the traditional NM protocols); 

(2) measurement data about what happens on network elements;  

(3) state information, which is fairly local, but could potentially be relevant for others (known 
also as ―triggers‖, ―notifications‖, ―events‖ or ―alerts‖, depending on further classification). 

If we consider that the NetInf API (cf. section 3.6.1) offers two basic types of services that can 
be used by NM, we can arrange them together with the NM data types in one table in order to 
see which services apply to which data types, and in which way. The first one is searching for 
objects according to certain criteria. The second one is storage/retrieval of found or known 
objects in the sense of ―queries‖, or, at least a ―lookup‖ service. There is a third one, and this 
is the mapping or resolution of objects IDs onto physical (routable) locations. It is part of the 
storage/retrieval service but worth to be recognized as a separate service that could be 
considered a DNS-like service. 
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    NetInf Methods   

  Search / Retrieve 
(Query) 

Storage (Object 
creation) 

Resolution / 
Mapping 

N
M

 d
a
ta

 t
y
p

e
s

 

Control 
commands 

Determine nodes to 
control based on 
certain criteria 

(certain control 
procedures might 
be stored as 
conventional 
objects) 

Determine 
physical 
location of one 
or more target 
nodes 

Measurement  
data 

Determine nodes to 
exchange 
measurements with, 
or search specific 
measurements on a 
set of nodes 

Aggregated 
measurement data  

  

State  
information 

Determine nodes to 
send triggers to and 
store trigger 
information within 
NetInf objects. 

Aggregated state 
information 

  

Table 6-2: NM data types and NetInf methods 

Regarding NM control commands, it is imaginable for nodes that issue control commands to 
other nodes to use an object ID as an address. The object ID would represent one or more 
target nodes, and it is the task of the NetInf system to resolve this. There is certainly more 
flexibility in this approach compared to the relatively simple domain name on IP address 
mapping that DNS (or even DynDNS) can offer. The resolution process for a NetInf 
information can potentially be based on many more input parameters. 

Mechanism for Mapping of Network State with NetInf 

The basic idea of using NetInf for INM network state information can be summarized in the 
following procedural description: 

1) Some state information (subtype ―special condition‖, i.e. with relevance to other nodes, for 
example a failure of a hardware component) is emerging at a specific network element (NE) or 
link between several NE. 

2) The affected NE (or another one nearby that detected the failure, too) uses the NetInf API 
(either locally on the node or at a well-known address in the network) and calls ―create object‖, 
selecting a meaningful name or description of the event, for example ―[type of failure].[node 
ID].[time].[geo-position].[network name]‖. The NetInf machinery is now able to answer queries 
from arbitrary NE, looking for matches to this specific state description, NE condition etc. 

Since the name of an event is sometimes synonymous with the related information to be 
transferred (e.g. ―failure at node xyz‖), the second part, i.e. the data retrieval from some 
remote nodes can be omitted in these cases. NetInf may store this minimized network state 
without reference to other nodes. 

3a) A network element that is interested in the particular state of another NE would send (via 
the NetInf upper API) either a ―retrieve object‖ command (if it knows the object ID) already, or 
a ―search‖ command to get a list of NE that match with the state / condition that the searching 
NE is interested in. NetInf indirection and resolution search and return all matching entries, for 
example within a certain geographic area or a managed part of the network. 

3b) Variation: Differently from (3a), the ―interested‖ network element can passively subscribe 
to a certain query, and NetInf would then use a ―push‖ method to inform the interested NE  
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We can distinguish active and passive retrieval mode. Both may be needed for different types 
of management applications. The pub-sub qualifies more for a-priori-known events and tasks, 
while the full search makes more sense for the unplanned. The differentiation might apply to 
the creation of objects in some sense, too, as some state can be ―routinely‖ (e.g. periodically) 
distributed or published, while other state may become relevant in unplanned ways and times. 

Information entities that are conforming to the NetInf approach consist of a binary data object 
and a separated locator for it. This applies to larger information entities which correspond 
more to the general NetInf model, where NetInf returns IDs of nodes that hold the requested 
information. 

It is worth noting that there can be a kind of minimal information entity, where the entire 
information is already fully contained within the identifier, so there is no need for contacting 
any other nodes for retrieval. It might be useful to support this, depending on the INM use 
case. Alarm state could use this minimal version (saving time for retrieval via additional 
nodes), while support of software distribution via NetInf would certainly use the full indirection 
model and complete NetInf description plus the ―binary object‖ that it refers to. 

6.3 Self-Management for the Network of Information 

6.3.1 In-Network Management for the Network of Information 

Traditionally, network management aspects have been considered in the last stages of 
designing and developing network technologies. Many initiatives operating under the future 
Internet umbrella continue to do so, regardless of whether their overall approach is 
evolutionary or clean slate. Deliverable D-6.1 [4] on the Network of Information (NetInf), 
reports on the first steps taken towards integrating self-management functionality from the 
initial design stages of NetInf, an information-centric architecture for the future Internet 
proposed within 4WARD. Apreliminary set of guidelines on how to apply INM principles to 
NetInf is proposed. Through several use cases, the advantages of tightly integrating self-
management functionality and network awareness with the actual service delivery in NetInf 
are demonstrated. 

6.3.2 Probabilistic Management for the Network of Information 

See above for a detailed description for decentralized probabilistic management. Also the 
results simulated, when applied to the NetInf has been shown. The results show how a 
certain, specific INM framework functionality (probabilistic management, can be applied to 
NetInf management functionality, which is built into NetInf. In our case, only within the 
simulator, this has been achieved.  

6.4 INM Operations for Virtual Networks (Vnet) 

In general, there are basically two places where INM concepts apply in the context of Virtual 
Networking. First, the basic infrastructure requires some management, where INM helps to 
operate the base infrastructure. Second, the network architectures running within a virtual 
network will have INM capabilities and functions implemented as well. See Figure 6-1. Finally, 
those capabilities might need to interact in order to achieve cross-layer optimization. Here the 
INM boundaries and the behaviour at the boundaries concerning inter-operator issue can 
show its potential, shielding some information but allowing for getting others for the sake of an 
optimal operation of the overall system. 
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Figure 6-1: Overview of INM in Vnet 

6.4.1 Decentralized Vnet Infrastructure Operations 

One important challenge on network virtualization is the efficient use of the physical 
resources. To accomplish such efficient use the management of the physical resources should 
be transparent to the applications running within the virtual networks, and should be executed 
at runtime in order to deal with the variation on the load requests of different virtual networks. 
Traditional resource allocation schemes use offline, centralized, and global view strategies to 
manage the use of physical resources. In contrast to these strategies, we propose a runtime, 
distributed, local view approach to manage physical resources. 

We define the employment of distribution, local view, and online features on the reallocation of 
resources of virtual networks. Some assumptions must be observed in order to provide such 
features in the new scheme, and they are described below. 

 The initial deployment of a virtual network is addressed by the provisioning of Vnet 
architecture described in deliverable D3.1 [4]. 

 We assume that the virtual topology defined by the first placement will not change 
during the lifetime of the virtual network, even after the reallocation of virtual slices 
among physical nodes. 

 The reallocation of slices must be as transparent as possible for the virtual node. In the 
current stage of this research, the reallocation of the virtual slices is transparent in the 
sense of avoiding exchanging any kind of information between the virtual application 
inside the moving slice and the virtual managers of the physical nodes involved in the 
reallocation operation. However, we introduce an interruption time on the execution of 
the application running inside the moving virtual slice. Interactions in a later stage are 
foreseen, but complicate the mechanisms, when negotiation needs to take place. 

The main objective of maintenance functions is to approximate the virtual node that is 
generating a great amount of traffic to the destination virtual node. The approximation is done 
moving the source virtual node from its physical device to another physical device near the 
destination virtual node 
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Figure 6-2: Relocation management with INM 

6.4.2 Using the Tools of VNET for managing networks 

The fundamental tool, which VNET provides, is the separation of functionality into different 
virtual networks. In the In-Network Management case different management functionality 
could be separated using this. However, the interaction of the different management 
functionality is also needed and would need inter-virtual network communication loosening the 
separation and modularization achieved. 

6.5 Management of Generic Paths 

4WARD WP5 activities are related to forwarding and multiplexing. The main object of research 
in WP5 is a new paradigm called the Generic Path (GP) [5]. GP is a new communication 
abstraction. It is expected that due to this new approach the network resource utilisation will 
be increased. GPs can be created automatically or by explicit signalling. GPs can be of point-
to-point type or may have multiple End Points. End Points communicate to each other and to 
the outside world via a binding function and offer one (or at least one) link to participate in 
networking. Path instances reside in Compartments and are interconnected via Mediation 
Points (MP). Depending on the networking strategy the Mediation Points may operate stateful 
or stateless, can be dynamic or static, can interpret packets or manipulate packets traversing 
them. The state awareness varies from null (particular GPs are not recognized, but the effects 
of MP activities can be observed at End Points of GP, e.g. as with random packet dropping 
during congestion) to full visibility of GP by the MP (e.g. when resource reservation per flow is 
done within the network, and a flow being representation of respective at transport level). The 
compartment defines the scope for addressing and routing (it can be an IPv4 domain, IPv6 
domain a LAN or a virtual network, to mention few examples ). The Mediation Point located at 
inter-compartment border can be seen as a multi-layer gateway which can have e.g. data 
transcoding capabilities, multicast functions, multi-domain gateway functions, etc. 

There were no intensive research yet devoted to the management of architecture based on 
generic paths. Below only initial thoughts are presented. It is envisioned that the management 
functions will be related to: 

 the management of GPs, 

 the management of End-Points,  

 the management of Mediation-Points,  

 the management of Compartments, 

 providing of support for GP-oriented operations, e.g. providing information about the 
network state, etc. 

The management of GP should enable the following functions: create, join, leave, destroy, or 
inspect a generic path. In case when the end-to-end QoS is required, it should be provided by 
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appropriate resource allocation - it is also necessary to control resource sharing among 
generic paths inside one compartment in order to provide "fair" and efficient sharing of 
available resources. It is also necessary to collect resource usage data for accounting.  

The management of End Points is responsible for generic and specific end point functions. 
End points play an important role in GP creation so functions related to GP management 
should be embedded in End points.  

The management of Mediation-Points is used to provide support for required functionality 
on generic paths and compartments. Management operations have to deal with cross-
technology and cross-layer oriented operations. They can be configured in a classical manner 
and the proper operation of mediation point has to be monitored. Due the important role which 
mediation point plays in the proposed architecture its operations have to be monitored with a 
special attention. The mediation point has to participate in resource management and path 
monitoring. 

The management of Compartment should be related to all functions related to paths and 
compartment creation, maintenance and destruction. Some of those functions can be common 
to all compartment types while other will be compartment specific. The GP management 
functions may reside inside a compartment. From the management point of view, in a multi-
compartment environment, an important problem is that of resource sharing among 
compartments. Accordingly, appropriate resource allocation schemes have to been provided. 
It should be also possible to dynamically allocate or re-allocation the resources in an on-
demand style.  

It is still to be investigated which management functions will be performed inside 
compartments and from the in-network management point of view should be treated as a 
higher-level function, i.e. they are excluded from basic network management operations and 
which management operations should be performed by INM. Joint Task TC45 created in 
November 2008 will work on these topics. This work is also expected to address the following: 

 network monitoring for routing, 

 Generic Resource Management Framework (GRMF), 

 usage of generic paths for INM intrinsic needs. 

Network monitoring developed in WP4 can provide information about the network state which 
can be used by routing protocols developed in WP5. Routing protocols should be aware of the 
intrinsic quality of potential paths as well as current utilization and performance status. In this 
context the common WP4 and WP5 work is focused on generic routing metrics. They include 
network level metrics (measured at the link, node and path level) and endpoint level metrics 
(to monitor the GP formed by the different sections produced by routing).  

The GRMF enables a description of resources independently of the network technology which 
identify resources and components of GPs, specify QoS architecture, evaluate transmission 
scheduling for GPs and evaluate resource sharing A key functionality within this framework is 
to identify the resources offered by different network technologies and to describe them in a 
standardized way. Due to the standard way of description of the offered resources, the GRMF 
manager is a heterogeneous resource-sharing mechanism. The routing metrics will be also 
described using the GRMF. 

Another common activity of WP4 and WP5 is the usage of generic paths for intrinsic INM 
information exchange. Such approach is natural but it comes with some problems of creation 
and maintenance of management-devoted generic paths without INM support (chicken and 
egg problem). 
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7 Discussion and Conclusions  

7.1 Main Achievements 

The main achievements and results of WP4 during the first year of the project can be 
summarized as follows. 

 We demonstrated, through a set of uses cases, the potential of INM capabilities that 
are not feasible with current management technology. This work is documented in 
deliverable D4.1. 

 We produced the first version of an INM framework design that realizes a 
management plane inside the network. It supports the embedding of management 
functions and provides reusable components to build collaborating self-managed 
entities. This framework is described in Chapter 3. 

 We developed a set of algorithms and concepts for real-time management in large 
networks. An emphasis has been laid on distributed monitoring in large-scale dynamic 
environments. Extensive simulations have demonstrated the effectiveness of the 
approach and have quantified the overhead vs. accuracy trade-off. The algorithms can 
be tuned in real-time to achieve target performance objectives. These results are 
described in Chapter 4. 

 We demonstrated the feasibility of rapid re-configurability for selected management 
algorithms and functions. We have developed real-time monitoring algorithms that 
dynamically adapt to node failures and to changes in the network state. Adaptation is 
performed locally, and, for instance, recovering from node failures can be achieved in 
a sub-second time interval. This work is described in Chapter 5. This Chapter also 
describes re-configuration with respect to path restoration and how a fast restoration 
time can be achieved (at the expense of management overhead). 

 We initiated an assessment of potential business value of INM technologies. First 
results are summarized in Chapter 3. 

This deliverable contains additional results, some of which need further evaluation and 
refinement, which will be performed in the second year. 

Based on results from work in this WP to date, thirteen papers have been submitted to 
international conferences, journals and magazines. Out of those, eight have already been 
accepted for publication. For instance, four papers will be presented at the upcoming 
IFIP/IEEE International Symposium on Integrated Network Management (IM 2009), which is 
the premier venue for publishing research results in network management. In addition, the 
INM approach has been presented by invitation at several conferences or workshops, for 
instance on panels (distinguished expert panel at 11th IEEE/IFIP Network Operations and 
Management Symposium (NOMS 2008), Brazil, April 2008, Information and Communication 
Technologies Event (ICT Event), November 2008, Lyon) and a keynote at the International 
Workshop on Distributed Autonomous Network Management Systems (DANMS 08), USA, 
November 2008. 

7.2  Fulfilment of Technical Annex and Measurable Objectives 

This section discusses how the technical objectives stated in the Technical Annex and the 
subsequently defined set of measurable objectives have been approached and to which 
extent they have been completed or achieved. The technical objectives were addressed as 
follows: 

Technical Objective 1: Evaluate and demonstrate the INM approach to embedded 
autonomic self-management for selected scenarios. 
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Task 4.1 has developed four scenarios that illustrate the shortcomings of traditional network 
management technologies and the potential of INM concepts. The scenarios are described in 
deliverable D4.1. As originally planned, the INM approach will be evaluated using one or more 
of these scenarios during the second year. 

Technical Objective 2: Provide abstractions and a framework for a self-organizing 
management plane.  

Task 4.2 has defined the basic architectural principles for a self-organizing management 
plane. It has also developed major elements of an INM framework, for instance so-called 
management capabilities, which are the building blocks for modeling management algorithms 
and functions that are developed in Tasks 4.3 and 4.4.  

Technical Objective 3: Design and implement a thin pervasive self-organizing network 
management plane that provides access to and communication between local self-
management functions embedded in the network and that organizes itself within a given 
network and adapts to dynamic changes of network topology and structure. Develop 
registration and access mechanisms for embedded self-descriptive management functions 
provided by participating nodes within the management plane.  

The current design of an INM framework within Task 4.2 provides the basis for a self-
organizing network management plane. This work will be extended during the second year to 
fully cover all aspects of this objective. Further, the implementation of the management plane 
(Task 4.5) starts in M16. 

Technical Objective 4: Define a scheme, strategies, and protocols for collaborative 
monitoring, self-optimizing, and self-healing. 

Several novel algorithms for distributed real-time monitoring have been developed and 
evaluated in Task 4.3. Also a distributed algorithm for anomaly detection has been developed 
and is currently under evaluation in Task 4.3. Lastly, a scheme for in-network self-optimization 
is under development in Task 4.4. (A potential overlap of this aspect with WP5 has been 
identified and will be addressed in the remainder of the project.) 

Technical Objective 5: Investigate search engine technologies for retrieval of information 
from an information base that is unstructured, incomplete, timed out and/or faulty. 

Mechanisms for information collection and aggregation have been developed. Investigation 
into search methods with respect to this objective will be performed in the remainder of the 
project. 

Technical Objective 6: Apply the INM approach to virtual networks and a network of 
information investigated in WP3 and WP6. 

A set of guidelines have been defined for providing self-management functionality in the 
context of NetInf in the joint Task TC46. In addition, work is ongoing on studying distributed 
storage and retrieval of INM data in the context of NetInf. 

The measurable objectives for WP4 were defined and addressed as follows: 

Measurable Objective 1: Devise an embedded "default-on" management capability which is 
an inseparable part of the network itself. 

Such a capability is an inherent property of the INM framework design developed in Task 4.2. 
In the first year, we have developed key components of such a framework. We have defined 
the basic architectural concepts, including architectural principles and elements that enable 
the development of embedded management processes and algorithms within a self-
organizing management plane. Lastly, we have described how distributed management 
algorithms that are continuously running in the management plane are integrated into this 
framework. 

Measurable Objective 2: The ―default-on‖ management capability will generate extra value in 
terms of guaranteed performance in a cost effective way, and will enable the networks to 
adjust themselves to different sizes, configurations and external conditions. 
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In the first year, we have provided two specific examples of guaranteed performance in Task 
4.3. First, efficient monitoring protocols with performance guarantees with respect to accuracy 
have been developed. Further, these protocols adapt to changes in network configuration and 
failures. Second, an anomaly detection protocol with probabilistic performance guarantees 
has been devised. Task 4.4 has developed several schemes for in-network self-adaptation, 
including path restoration, resource reservation and resource optimization.  

Measurable Objective 3: Such INM capability will allow for a level of real-time awareness of 
the network behaviour that is not feasible with current management technology. 

After the first year we can show that tree-based monitoring protocols can continuously provide 
the monitored metric with a lag of a sub-second in a realistic network setting with hundreds of 
nodes (Task 4.3).  

Measurable Objective 4: Further, the management plane will typically reconfigure within a 
sub-second, in response to node addition or failure, and resume correct operation thereafter. 
Such a capability will significantly reduce the reaction time of today's centralized management 
systems, specifically in large networks. 

In Task 4.3 we have shown that, in the context of real-time monitoring, the adaptation time is 
very short. For instance, in case of a node failure, our tree-based and gossip-based algorithms 
re-configure within a fraction of a second. 

In the context of event distribution, we have shown that this task is performed within a few 
hundred milliseconds, enabling fast reconfigurations based on the information conveyed in the 
event (Task 4.4). In the remainder of the project, we plan to show that the re-configuration of 
the INM prototype has similar time characteristics. 

Measurable Objective 5: For proving cost efficiency, the operational expenses when applying 
INM will be compared to conventional operation and a substantial cost reduction is expected. 

Work is ongoing on assessing the business value of INM technologies. The state of this work 
is summarized in Chapter 5. 

Measurable Objective 6: The time constraints under which management operations can be 
performed will be evaluated. Since timeliness is achieved at the expenses of computational 
and traffic overhead, the real-time capabilities will be evaluated with respect to those global 
objectives. 

In Task 4.4, we performed a study that evaluated adaptation time vs. protocol overhead for 
the purpose of path restoration. This study was performed in the context of studying the effect 
of decentralization for management tasks. 

Measurable Objective 7: To prove scalability of INM, it will be to shown that the number of 
managed devices or network functions will have a limited impact on the overall performances 
of management operations, like timeliness. 

In the first year, Task 4.3 has evaluated specific algorithms in the context of decentralized 
real-time monitoring. We have shown, for a given scenario, that the estimation accuracy of our 
gossip-based algorithm degrades only minimally with the network size, for a given 
management overhead. Second, we have shown in a simulation study that for our tree-based 
aggregation algorithm for histograms, the maximum link utilization increases only minimally 
with the network size. 

Measurable Objective 8: Part of the self-discovery capabilities will be verified through 
practical use cases, where it will be shown that the management plane adds new 
functionalities as long as they are discovered in the network. 

In the first year, Task 4.2 produced the first version of an INM framework design that realizes 
a management plane inside the network. This self-organizing management plane supports is 
designed for supporting plug-and-play and dynamic integration or reconfiguration of 
management functionality, enabling the discovery of new functionality. We plan to provide a 
practical use case of self-discovery capabilities during the remainder of the project. 
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7.3 Comparison of 4WARD INM with related projects in EU and US 

A range of European and American research projects overlap in scope and approach to some 
extent with our work in WP4. We list and briefly characterize here some of which we believe 
are of particular relevance. More information can be found in Annex C. 

 

ANA - Autonomic Network Architecture 

EU IP project, 6th FP; Coordinator: ETH Zurich 

http://www.ana-project.org/ 

The focus of this project is on an architecture for autonomic networking that facilitates self-* 
features. One goal of this project is to include dynamic, adaptive and programmable 
monitoring features as an integral part of the network architecture. Though both ANA and 
4WARD aim at increasing the level of network automation, ANA should be regarded as a 
generic architecture while INM in 4WARD aims at leveraging a tight coupling of management 
functions with the services deployed on a device. 

E3 

EU IP project, 7th FP; Coordinator:  Alcatel  

https://ict-e3.eu/ 

E3 aims at a gradual, non-disruptive evolution of current wireless systems into an integrated, 
scalable and efficiently managed Beyond-3G cognitive radio system framework. The use of 
the radio resources and spectrum are optimized following cognitive radio and cognitive 
network paradigms characterized by reconfigurable, self-adaptive, autonomic and 
collaborative features. Both E3 and 4WARD aim at designing autonomic management 
systems, with E3 focusing on wireless scenarios, while 4WARD having a wider scope in terms 
of considered scenarios. 

AutoI - The Autonomic Internet 

EU project, 7th FP; Coordinator: Hitachi Europe  

http://www.ist-autoi.eu/ 

This project proposes to transition from a service agnostic Internet to a service-aware network 
where resources are managed by applying autonomic principles. The approach to network 
management in AutoI is catered for in one of the 5 planes: virtualization, orchestration, 
management, service enabler and knowledge planes. Similar to 4WARD, this project aims at 
developing a distributed self-managing management plane. However, unlike 4WARD, this 
project focuses on virtual resources. 

Simple Economic Management Approaches of Overlay Traffic in Heterogeneous 
Internet Topologies 

EU STREP project, 7th FP; Coordinator: University of Zurich 

http://www.smoothit.org/ 

This project looks into the detailed economic and technical mechanisms for a flexible, secure, 
and scalable traffic management of overlay networks in tomorrow's ISPs. Its objectives include 
efficient structuring of overlays, advanced traffic management and study of key requirements 
for commercial applications. 4WARD is related to this project in a number of ways. Overlay 
networks represent concrete scenarios within the more abstract and generalized virtualization 
framework of 4WARD. Traffic management is also addressed in this project using similar, 
distributed and self-organizing concepts as the broader INM approach of 4WARD. 

Architectural Support for Network Trouble-Shooting 

NSF FIND project; Coordinator:  ICSI  

http://www.nets-find.net/Funded/ArchtSupportNet.php 

http://www.ana-project.org/
https://ict-e3.eu/
http://www.ist-autoi.eu/
http://www.smoothit.org/
http://www.nets-find.net/Funded/ArchtSupportNet.php
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This project focuses on troubleshooting in networked systems, including failure detection, 
identification, root-cause analysis and attributing problems to responsible parties. The 
approach is based on annotating network traffic with meta-information to facilitate causality 
tracking of events. Although this project and 4WARD have the common goal of achieving 
efficient troubleshooting, 4WARD does not consider annotating network traffic for 
troubleshooting, but instead focuses on algorithms that do not necessarily need such data. 

A Framework for Manageability in Future Routing Systems 

NSF FIND project; Coordinator: University of Pennsylvania  

http://www.nets-find.net/Funded/Framework.php 

The goal of this project is the development of a framework for specifying, understanding, and 
evaluating what features to put into routing systems to make them manageable and evaluate 
design choices and trade-offs thereof in terms of performance and manageability. The project 
is expected to deliver results identifying key manageability features that must be incorporated 
into future routing architectures. The vision pursued by this project is in line with that of 
4WARD and we intend to closely study the approach used by this project and their results. 

Design for Manageability in the Next Generation Internet 

NSF FIND project; Coordinator: University of Wisconsin-Madison  

http://www.nets-find.net/Funded/Manageability.php 

The objective of this project is to explore design alternatives in the development of technology 
that will facilitate critical network management tasks in a NGI. The project focuses on low-level 
building blocks that can be composed in different configurations to enable an Internet 
management plane. Similar to 4WARD, this project aims at designing automated and intrinsic 
management solutions. However, the goals of both projects differ in that this project puts more 
emphasis on test-bed experimentation methodology. 

Model-based diagnosis in the Knowledge Plane 

NSF FIND project; Coordinator: MIT  

http://www.nets-find.net/Funded/ModelBased.php 

The goal of this project is to develop a Knowledge Plane (KP), a component of a Future 
Internet that locates, collects, and manages existing knowledge in a distributed way. This 
partially overlaps with the goal of Task 4.3 in 4WARD. We therefore intend to closely study the 
results achieved within this project. 

A Network-Wide Hashing Infrastructure for Measurement and Monitoring 

NSF FIND project; Coordinator:  Harvard University 

http://www.nets-find.net/Funded/NetworkWide.php 

The focus is on monitoring in large-scale networks. The goal is to reduce monitoring overhead 
by summarizing monitored data through hash functions. This project is complementary to our 
current work in 4WARD as this project focuses on aggregation of monitoring data over time 
rather than over space as we do. 

Towards Complexity-Oblivious Network Management 

NSF FIND project; Coordinator: Cornell University  

http://www.nets-find.net/Funded/TowardsComplexity.php 

This project focuses on the development and evaluation of a network management 
architecture that aims at reducing the complexity of network management. The basic 
approach is to separate the management plane composed of distributed network devices from 
the data plane, and, requiring the data plane to expose a generic management interface to the 
management plane. This project has goals similar to 4WARD and proposes similar 
approaches. We intend to closely study the results achieved within this project. 

http://www.nets-find.net/Funded/Framework.php
http://www.nets-find.net/Funded/Manageability.php
http://www.nets-find.net/Funded/ModelBased.php
http://www.nets-find.net/Funded/NetworkWide.php
http://www.nets-find.net/Funded/TowardsComplexity.php
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7.4  Plans for the Second Project Year 

At the current state, the design of architectural elements and their interaction including basic 
mechanisms has been completed. Work for the second year includes: 

 Specifying architectural details, such as the modelling and detailing of interactions and 
more complex management processes, in conjunction with prototypical 
implementations. 

 Showing by means of prototypical implementations how the framework supports 
scalability and how external conditions can be propagated into the self-organizing 
management plane and to the management capabilities of individual management 
algorithms. 

 Investigating in conjunction with a prototypical implementation how the framework 
supports algorithms and management processes in achieving real-time and 
performance requirements. 

The plans for the definition of monitoring functions include: 

 Analyzing monitoring protocols under highly dynamic scenarios. For instance, under 
high node and link failure rates. 

 Designing algorithms and mechanisms for the secure estimation of global aggregates 
in multi-domain network environments. 

 Performing a comparative evaluation of gossip-based vs. tree-based monitoring 
algorithms. 

 Evaluating the distributed anomaly detection algorithm designed during the first year. 

 Engineering a design for continuous estimation of traffic matrices in a distributed 
fashion.  

The plans for the definition of self-adaptation functions include: 

 Completing the research started during the first year. The concepts will be further 
investigated, solutions will be provided and implemented, and simulation results will 
evaluate the validity of the proposals 

 Investigating the concept of self-organization, the formation and management of 
collaboration groups that implement specific INM tasks. 

 Compiling results and recommendations, which will be included in the final WP4 
deliverable. 

 

Additionally, WP4 will work towards the evaluation and implementation of the concepts 
developed so far. A prototype that will serve as basis to demonstrate the feasibility of the INM 
paradigm as well as to show the advanced capabilities defined within WP4. The evaluation 
study will support the benefits introduced by the INM functions and will be based on D-4.1. 
Among other things, this working item will include further investigation on the impact of INM on 
business values for the future Internet. 

Finally, WP4 will strengthen the synergies with other WPs and apply results of WP4 to 
enabling advanced management capabilities in the context of Virtualization, Generic Paths, 
and Network of Information. The discussions with WP5 showed important opportunity for 
additional collaboration between INM and the Generic Path on new forwarding and 
multiplexing paradigms since these new paradigms naturally include a measure of self-
adaptation. This is true in particular for routing in both wired and wireless networks where 
dynamic path choice both improves efficiency and ensures application QoS requirements are 
satisfied. In the second year, synergies in the respective approaches of WP4 and WP5 will be 
more efficiently exploited in the newly created joint Task TC45. 
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Annexes 

A QoS And Resource Optimization 
This annex presents more detailed description about QoS and resource optimization. 

 

A.1 QoSdmFC Cross-Layer Messages and Primitives (details from 3.7.2) 

A.1.1 QoSdmFC: Messages and Primitives using SDL 

 
Figure A-1: Framework instantiations based on functional components 

 

This example refers to QoS dedicated management functional component dmFC only, which 
will interact with other self-managing functional components smFC such as: NetInf, ForMux, 
as well as with hardware (see Figure A-1). The specification description language SDL 
involved uses the following symbols: 

 

 
Figure A-2: QoSdmFC: messages and primitives using SDL 

 

Note that management messages are exchanged between nodes through a dedicated 
management GP (horizontal communication), whilst the primitives are mainly used to 
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exchange information between users and layers, or in the cross-layering processes (vertical 
communication). 

The QoSdmFC is initially inactive, being in state S0 (Figure A-3). 

 
Figure A-3: QoSdmFC, state S0: inactive 

Once instantiated, the system will enter in state S1 waiting for top-down cross-layer request 
(i.e. the committed QoS parameter, usually the transfer rate imposed to the hardware) (Figure 
A-4). Note that in any of the following states the functional component could be disabled when 
the primitive disableQoSdmFC is issued. In state S2 if the hardware is not reacting in due time 
imposed by Refuse Timer, the committedQoS message received from ForMux (Figure A-4) 
will not be sent anymore as committedQoS primitive (Figure A-5). In case of a successful 
exchange, the top-down approach ends and the system goes into state S3.  

 
Figure A-4: QoSdmFC, state S1: waiting for top-down cross-layer request 

 

 
Figure A-5: QoSdmFC, state S2: top-down cross-layer 
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The bottom-up approach is considered a success if the primitive requestQoSParams is 
understood by the hardware (Figure A-6). As a result obtained from the hardware, the current 
traffic parameters BER, BER probability and nominal transfer rate for that specific physical link 
are included into getQoSParams primitive (Figure A-7). 

 

 
Figure A-6: QoSdmFC, state S3: bottom-up cross-layer request 

 

 

 
Figure A-7: QoSdmFC, state S4: bottom-up cross-layer 

 

The traffic parameters are converted by INM into a management information object, being 
published as message publishQoSObject through the service interface to NetInf (Figure A-8). 
The same information is processed also to calculate a composite metric needed by the INM 
routing module for global routing table that will assist ForMux and other smFCs in performing 
routing (Figure A-9). However this global routing table is important also for management 
purposes, in order to permit/deny any operational access to hardware and to perform routing 
in case of emergency. 
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Figure A-8: QoSdmFC, state S5: QoS parameters published as a service 

 

 
Figure A-9: QoSdmFC, state S6: composite metric published as a service 

 

A.1.2 Proposed XML Format  

The messages and primitives described in this paragraph are used by QoSdmFC and are 
according to the requirements presented in 3.7.2 and in Annex A.1.1. As INM Protocol we 
kept for the initial phase of implementation the existing IP, whilst for locator we used the 
existing MAC address. Obviously the XML format permits to replace them once the networks 
evolve towards Future Internet and other protocols will be involved. 

 

Message committedQoSParams 

<message from="source_name―> 

 <type>committedQoSParams </type> 

 <node> 

  <locator type="Type‖> inmp://192.168.1.1/</locator>  

  <name>FC/dmFC Name</name>  

  <type>Service/Management</type>  

  <capability> 

   <locator type="Type‖> interface_identifier</locator>  

   <name>Capability_name</name>  

   <interface>Collaboration/Organization</name>  

  </capability> 



  Document: FP7-ICT-2007-1-216041-4WARD/D-4.2 

Date: 2009-03-31 Security: Public 

Status: Final Version: 2.0 

 

4WARD PUBLIC INFORMATION 119(138) 

 

 </node> 

 <parameter committed_value="VALUE‖ measurement_unit="VALUE‖ > Parameter_1</parameter> 

 ........... 

 <parameter committed_value="VALUE‖ measurement_unit="VALUE‖ > Parameter_N</parameter> 

</message> 

 

Example: 

<message from=―ForMux―> 

 <type>committedQoSParams </type> 

 <node> 

  <locator type=―absolute‖> inmp://192.168.1.1/</locator>  

  <name>ForMux</name>  

  <type>Service</type>  

  <capability> 

   <locator type=―relative‖> 00ae.4050.4350</locator>  

   <name>Cross-Layer</name>  

   <interface>Collaboration</name>  

  </capability> 

 </node> 

 <parameter committed_value=―2‖ measurement_unit=―Mbps‖ >Transfer_Rate</parameter> 

</message> 

 

Primitive committedQoSParams 

 <primitive to=―destination_name―> 

 <type>committedQoSParams </type> 

 <node> 

  <locator type="Type‖> inmp://192.168.1.1/</locator>  

  <name>FC/dmFC Name</name>  

  <type>Service/Management</type>  

  <capability> 

   <locator type="Type‖> interface_identifier</locator>  

   <name>Capability_name</name>  

   <interface>Collaboration/Organization</name>  

  </capability> 

 </node> 

 <parameter committed_value="VALUE‖ measurement_unit="VALUE‖ > Parameter_1</parameter> 

 ........... 

 <parameter committed_value="VALUE‖ measurement_unit="VALUE‖ > Parameter_N</parameter>  

</primitive > 

 

Example: 

< primitive to=―Hardware―> 

 <type>committedQoSParams </type> 

 <node> 

  <locator type=―absolute‖> inmp://192.168.1.1/</locator>  

  <name>QoS</name>  

  <type>Management</type>  

  <capability> 

   <locator type=―relative‖> 00ae.4050.4350</locator>  

   <name>Cross-Layer</name>  

   <interface>Collaboration</name>    
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  </capability> 

 </node> 

 <parameter committed_value=―2‖ measurement_unit=―Mbps‖ >Transfer_Rate</parameter> 

</ primitive > 

 

Primitive requestQoSParams 

<primitive to=―destination_name―> 

 <type>requestQoSParams</type> 

 <node> 

  <locator type="Type‖> inmp://192.168.1.1/</locator>  

  <name>FC/dmFC Name</name>  

  <type>Service/Management</type>  

  <capability> 

   <locator type="Type‖> interface_identifier</locator>  

   <name>Capability_name</name>  

   <interface>Collaboration/Organization</name>  

  </capability> 

 </node> 

 <parameter measurement_unit="VALUE‖> Parameter_1</parameter> 

 ........... 

 <parameter measurement_unit="VALUE‖ > Parameter_M</parameter>  

</primitive > 

 

Example: 

< primitive to=―Hardware―> 

 <type>requestQoSParams</type> 

 <node> 

  <locator type=―absolute‖> inmp://192.168.1.1/</locator>  

  <name>QoS</name>  

  <type>Management</type>  

  <capability> 

   <locator type=―relative‖> 00ae.4050.4350</locator>  

   <name>Cross-Layer</name>  

   <interface>Collaboration</name>    

  </capability> 

 </node> 

 <parameter measurement_unit=―Non_dimensional‖ >Bit_Error_Rate</parameter> 

 <parameter measurement_unit=―Percentage‖ >Bit_Error_Rate_Probability</parameter> 

 <parameter measurement_unit=―Mbps‖ >Nominal_Transfer_Rate</parameter> 

 <parameter measurement_unit=―dB‖ >Signal_to_Noise_Ratio</parameter> 

</primitive > 

 

Primitive getQoSParams 

<primitive from=―source_name―> 

 <type>getQoSParams</type> 

  <node> 

  <locator type="Type‖> inmp://192.168.1.1/</locator>  

  <name>FC/dmFC Name</name>  

  <type>Service/Management</type>  

  <capability> 
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   <locator type="Type‖> interface_identifier</locator>  

   <name>Capability_name</name>  

   <interface>Collaboration/Organization</name>  

  </capability> 

 </node> 

 <parameter value="VALUE‖ measurement_unit="VALUE‖> Parameter_1</parameter> 

 ........... 

 <parameter value="VALUE‖ measurement_unit="VALUE‖ > Parameter_K</parameter>  

</primitive > 

 

Example: 

< primitive from=―Hardware―> 

 <type>getQoSParams</type> 

 <node> 

  <locator type=―absolute‖> inmp://192.168.1.1/</locator>  

  <name>Hardware</name>  

  <type>Management</type>  

  <capability> 

   <locator type="Type‖> 00ae.4050.4350 </locator>  

   <name>Cross-Layer</name>  

   <interface>Collaboration/</name>  

  </capability> 

 </node> 

 <parameter value=―1E-7‖ measurement_unit=―Non_dimensional‖ >Bit_Error_Rate</parameter> 

 <parameter value=―0.2‖ measurement_unit=―Percentage‖>Bit_Error_Rate_Probability</parameter> 

 <parameter value=―2‖ measurement_unit=―Mbps‖ >Nominal_Transfer_Rate</parameter> 

</primitive > 

 

Message publishQoSObject  

<message to=―destination_name―> 

 <type>publishQoSObject </type> 

 <node> 

  <locator type="Type‖> inmp://192.168.1.1/</locator>  

  <name>FC/dmFC Name</name>  

  <type>Service/Management</type>  

  <capability> 

   <locator type="Type‖> interface_identifier</locator>  

   <name>Capability_name</name>  

   <interface>Collaboration/Organization</name>  

  </capability> 

 </node> 

 <parameter value="VALUE‖ measurement_unit="VALUE‖ > Parameter_1</parameter> 

 ........... 

 <parameter value="VALUE‖ measurement_unit="VALUE‖ > Parameter_K</parameter>  

</message> 

 

Example: 

<message to=―NetInf―> 

 <type>publishQoSObject </type> 

 <node> 
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  <locator type=―absolute‖> inmp://192.168.1.1/</locator>  

  <name>QoS</name>  

  <type>Service</type>  

  <capability> 

   <locator type="relative‖>00ae.4050.4350</locator>  

   <name>Cross-Layer</name>  

   <interface>Collaboration</name>  

  </capability> 

 </node> 

 <parameter value=―1E-7‖ measurement_unit= ―Non_dimensional‖> Bit_Error_Rate </parameter> 

 <parameter value=―0.2‖ measurement_unit=―Percentage‖>Bit_Error_Rate_Probability</parameter> 

 <parameter value=―2‖ measurement_unit=―Mbps‖ >Nominal_Transfer_Rate</parameter> 

</message> 

 

Message publishCompositeMetricObject  

<message to=―destination_name―> 

 <type>publishCompositeMetricObject </type> 

 <node> 

  <locator type="Type‖> inmp://192.168.1.1/</locator>  

  <name>FC/dmFC Name</name>  

  <type>Service/Management</type>  

  <capability> 

   <locator type="Type‖> interface_identifier</locator>  

   <name>Capability_name</name>  

   <interface>Collaboration/Organization</name>  

  </capability> 

 </node> 

 <parameter value="VALUE‖ measurement_unit="VALUE‖>CompositeMetric</parameter>  

</message> 

 

Example: 

<message to=―NetInf―> 

 <type>publishCompositeMetricObject </type> 

 <node> 

  <locator type=―absolute‖> inmp://192.168.1.1/</locator>  

  <name>QoS</name>  

  <type>Service</type>  

  <capability> 

   <locator type="relative‖>00ae.4050.4350</locator>  

   <name>CompositeMetric</name>  

   <interface>Collaboration</name>  

  </capability> 

 </node> 

 <parameter value=―45213‖ measurement_unit=―Non-dimensional‖> CompositeMetric </parameter>  

</message> 

Whenever publish to NetInf or other FC, the message format might be adapted to the 
specifications needed at destination. 
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A.2 Annex on Resource Optimization 

A.2.1 Top-Down Approach 

Domain 2Domain 1
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D GB
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C

External Management
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I

 
Figure A-10: Different nodes and roles inside a network 

Figure A-10 illustrates a partial analysis and classification of network entities. Different types 
of nodes can be identified, regarding their role in the network. The behavior of a node 
depends on the role (or roles) it has on the network (or within a specific domain or virtual 
network). In this picture we can easily see how domains and boundaries affect the role of 
different nodes. Local (intra-domain) signalling, sharing and cooperation capabilities is 
required in every node (on the picture). Cross-domain interactions (inter-domain) 
functionalities are only required on special proxy nodes (such as E and F on the picture).  

Different criterions (information source/sink, mobility, capacity, path position, distance, etc) 
can be used in the classification of network entities and in the identification of the possible 
roles performed by each entity. 

A.2.2 Bottom-Up Approach 
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Figure A-11: Base multi-home scenario for the optimization model 

Figure A-11 represents the base scenario for the multi-homing access-network selection 
problem. One network terminal can simultaneously reach several (three) access networks (A, 
B and C). This node can selected any of these networks (or all) to achieve the required 
services. Some of the nodes in the network will cooperate with the terminal in the selection of 
the best configuration. The definition of ―best‖ depends on the requirements (user 
preferences, network preferences, management policies) and the status of the network. 

The establishment of a local domain with the set of entities (nodes, terminal) that cooperate to 
solve this problem is the first phase of the process – network discovery. Identifying the 
relevant network parameters and how they weight on the available resources is the goal of the 
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model definition and will shape the necessary distributed cooperation protocol – what 
knowledge needs to be shared, with whom and how. 

A.2.3 Optimization Process Model 
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Figure A-12: Optimization process model 

The Knowledge Sharing Component handles the distributed aspects for the information. It 
distributes local knowledge whenever necessary using the Distributed Communication 
Protocol. It also acquires remote information and updates the local knowledge as necessary. 

Information update is triggered by internal events such as clock based periodic events or 
requests from other components such as the Forecasting Component. External events could 
also trigger the update process. The arrival of a new message (with remote knowledge 
information) or the definition of a new network management policy, are two examples of such 
events. 

The Forecasting Components periodically measures the metric matrix and estimates the 
evolution of each relevant parameter. This estimation could be base on the shape of the 
variation graph of the parameter (gradient and concavity) and could arise in a probability 
function (represented in the picture). Periodic variation could also be detected and teach to 
the model by means of a transformation function (also in the picture). 

The Condition Detection Component triggers an internal event whenever a parameter 
exceeds a predetermined range (in its simple form). This is the base mechanism for assisting 
other INM applications and other processes (e.g. in the control plane). 

The Decision process queries the local database passing the requirement list and time as 
input variables. The result is a weighted matrix indicating the cost and benefit of each possible 
solution. The estimation of the ―best‖ solution is obtained by a computational calculation based 
on a pre-determined knowledge database and a set of current requirements. This approach 
will allow for faster decisions, scalability of the algorithm and a small usage of computational 
resources, as we plan to prove. Since most of the decisions depend on the agreement of 
several different entities, the process is reached iteratively. After a pre-decision is made, the 
optimization peers (other nodes involved) are to be notified and the decision could be 
acknowledged or rejected. In the last case, the knowledge on the network increases and a 
new iteration is run. 

Communication between network entities, for INM purposes, uses a general message format 
(INMP) and is used to exchange knowledge and decisions. A temporary domain is formed to 
handle a specific optimization problem. Within this domain, communication between peers is 
triggered and happens when: 
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 the domain is being created – discovery mechanisms; 

 a node inquires its neighbourhood about specific (or general) information; 

 a node informs its neighbours about some information (local or external); 

 a node notifies its peers about some internal decision; 

 a node receives a notification about some decisions from its peers; 

 a network condition changes unexpectedly. The worst case scenario is if this occurs 
while running a decision algorithm. 

Another aspect to take into account is the possible existence of partial knowledge, in which 
each node has incomplete information from the others, and the decisions need to be 
processed with this incomplete information. For this process to be feasible, a model needs to 
be created, and the efficiency of the decisions will be assessed according to the level of 
uncertainty of information. 

A distributed protocol is a comprehensive set of rules that define the behaviour of each 
network entity. Each rule sets an action to each possible condition. An action is a ―what to do‖. 
A condition is a ―when to do‖. 

Conditions are defined as a pair event, network state. For the same network state, different 
actions will take place for different event. Identically, for the same event, different actions will 
take place on each network state. 

An event could be generated internally (clock based, condition reached, etc.) by some local 
process or external (network notification – alarm, received message, etc.). 

A.2.4 Decentralized Traffic Matrix Estimation 

We present a method to obtain traffic matrices for IP/MPLS networks. Origin-to-destination (o-
d) traffic flows are calculated from measured statistical data of the Label Distribution Protocol 
(LDP) that is used in MPLS networks to distribute label information. The proposed method 
does not require the installation of any Label Switched Paths (LSPs) – routing can still be 
defined by IGP link metrics.  

For Internet service providers there are several reasons why the knowledge of end-to-end 
traffic demands is crucial. The matrix of traffic demands (e.g. in kbit/s) for all combinations of 
two nodes (routers) within the topology under consideration is called traffic matrix (TM). In this 
work we aim at the calculation of average values for an end-to-end demand and for a certain 
time interval (e.g. five or 15 minute averages). Traffic matrices are particularly relevant and 
necessary in (extension-) planning and traffic engineering of IP networks. For planning 
network extensions traffic matrices on a point-of-presence (PoP) basis are required. They 
enable the simulation of various extension scenarios and the decision on topology changes: 
When traffic between two nodes exceeds a certain level, a direct link between those nodes 
might be more efficient than the extension of existing links, which would imply a higher 
percentage of multi-hop traffic.  

Traffic engineering in IP networks includes traffic control: Routing for all demands is optimized 
with respect to given optimization criteria – generally Quality of Service (QoS) aspects and the 
overall network utilization (for example the minimization of the maximum link load) are 
considered [1][12]. By the introduction of Multiprotocol Label Switching (MPLS) [11] the IETF 
has provided a fine granular control for end-to-end traffic demands [13]: The routing for each 
single demand can be controlled by the definition of one or more Label Switched Paths (LSP). 
There are various methods to calculate and optimize LSPs (LSP-Design Problem) [6][7][8][10].  

The calculation of traffic matrices of 15 minute average values for all o-d demands in a 
topology of 150 routers can be done in real time such that the proposed method allows for a 
continuous calculation of traffic matrices. Since the main prerequisite is the existence of LDP 
statistical data, the method is not vendor dependent but applicable to heterogeneous networks 
where all routers provide this information. 
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Traffic engineering goals can also be considered with classical routing protocols like OSPF or 
ISIS, that are based on shortest-path routing with respect to link metrics: The aim is to 
optimize the link metrics – and thus the routing indirectly – such that the given criteria are met 
as good as possible, see for example [3][5]. All methods of traffic engineering that aim at 
optimizing the routing in the network need a traffic matrix as an input. When taking different 
QoS classes into account, it is even necessary to have the traffic matrices for each QoS class 
separately. Despite the relevance of traffic matrices for network planning, there is no simple 
and general method so far to measure the traffic matrix in IP networks. This fact indicates 
insufficient activity or a weak position of network providers in the IETF standardization process 
and can be seen as a demand for improvement in future Internet design. An overview of 
methods to obtain traffic matrices for IP networks can be found in [2]. The stated methods can 
be grouped as follows:  

Estimation of traffic matrices based on link utilizations and routing information.  

Direct measurement with Cisco‘s Netflow approach [7].  

The method we present here works for MPLS-enabled networks – more exactly for networks 
that use label-switching. This does not require the definition of any explicitly routed LSP (TE-
LSP) – the routing can still be defined by ISIS or OSPF link metrics. In this case, paths are 
defined implicitly by the shortest paths. Most of the methods from [2] can also be applied to 
MPLS networks.  

In addition, there is another alternative to obtain traffic matrices in MPLS networks: Each 
defined TE-LSP has usually a byte counter associated for the traffic using this LSP. Thus, 
building a full mesh of TE-LSPs in a MPLS network enables to measure the traffic matrix 
directly. 

Comparison and Motivation 

Existing methods for traffic matrix inference have disadvantages or might not be applicable at 
all in a given IP/MPLS network:  

 On the one hand, the estimation from link utilization data has the advantage that it is 
always applicable since traffic on the links is well known and monitored by network 
operators. On the other hand, it is not possible to uniquely determine the traffic matrix 
in this way. Deterministic and statistical techniques can improve the quality of the 
estimation but depend on the individual network topology and additional meta data, 
e.g., initial estimates for the traffic matrix based on population data.  

 Tracing flows in IP networks with Cisco‘s Netflow [3] may not be possible due to 
technical restrictions: not all line cards for Cisco routers support sampled Netflow and 
some have higher memory requirements in this case. Additionally, there is the conflict 
between measurement accuracy and performance degradation: the higher the 
sampling rate, the bigger the measurement‘s impact on the routing performance. 
Sampling rates between 1:1000 and 1:10000 can be used in practice. Also, the sheer 
amount of data generated by Netflow exports from all routers of a large network may 
induce significant costs for processing and aggregating.  

 In MPLS networks the use of TE-LSP byte counters enables to measure the traffic 
flows between origin and destination nodes directly. The issue in this case is mainly 
scalability and manageability: One has to define at least one LSP per traffic demand. 
Many service providers use load sharing (Equal Cost Multiple Paths – ECMP) in their 
networks to distribute traffic more evenly. The use of one LSP per demand stops load 
sharing – one has to define multiple LSPs per demand explicitly to simulate load 
sharing with LSPs. Thus a network with nodes requires the definition and management 

of LSPs in the order of K N
2
, where K is the mean split factor for ECMP.  
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    Alg. 1: Calculate the Traffic Matrix                                 Alg. 2: Calculate residual paths and factors 

 

LDP Method 

The forwarding of packets in MPLS networks is based on labels that are prepended to the 
regular IP header information. Packets belong to a certain Forwarding Equivalence Class (FEC) 

and as they are forwarded along a path through the network the label is exchanged at each 
router (and removed at the ultimate or – typically – the penultimate router of the MPLS 
topology. MPLS labels can be stacked, i.e. a packet can have multiple labels prepended. The 
label information about which label a router will use for a particular FEC can be distributed 
with the Label Distribution Protocol (LDP) throughout the MPLS network. Many router 
operating systems provide statistical data about the bytes switched in each FEC – for example 
the ―mpls forwarding table‖ in Cisco‘s IOS [3] or the ―ldp traffic statistics‖ in Juniper‘s JunOS 
[9]. We assume that these statistics include for each path passing through the router the 
incoming and outgoing labels, the FEC, the outgoing router interface and a counter for the 
bytes switched. In combination with knowledge of the network topology, one can determine 
the paths‘ end inside the topology. If a path begins at the router under consideration is not 
obvious from the existing information. The idea of the proposed method is to assume that all 
paths begin at the router in the first step and add the bytes switched to the corresponding 
element of the traffic matrix. In a second step we subtract the same amount from the traffic 
matrix element for the second router to the paths‘ destination. 

Prerequisites 

Given a network topology with n routers, where each router has Ir, r = 1, …, n interfaces. The 

network topology is represented by the function T that assigns to each pair of router and 
interface either its destination router or 0, if this interface leads to a router that does not 
belong to the topology under consideration 

j  {1, …, n} and i  {1, …, Ir}:  T(r, i)  {0, 1, …, n}. 

We denote by Pj the number of paths that pass through router j that has the following 

information for each path p:  

 I(r, p):     outgoing interface of path p at router r,  

 B(r, p):    traffic that was switched on path p at router r during a defined time interval,  

 IL(r, p):   incoming label of path p at router r,  
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 OL(r, p):  outgoing label of path p at router r. 

The following aspects of label switching have to be considered when calculating traffic 
matrices in the proposed way:  

 In networks with load sharing, one router can split paths so that one incoming label is 
mapped to multiple outgoing labels (and multiple outgoing interfaces). By P(r, il) we 
denote the set of paths that pass through router r and have the same incoming label il. 

One cannot rule out the possibility that the new paths end at different routers of our 
given topology. Although this might seem improbable for complete topologies, the 
more general approach can be useful when calculating traffic matrices for subsets of 
real MPLS networks. Thus, our method does not make any assumptions that paths 
that are split on the way end at same node of the network.  

 The reverse case might also occur: packets arrive with the same label from different 
routers and the paths are merged with one forwarding rule to single one.  

 If the two cases mentioned above occur jointly, i.e. packets arrive from different routers 
with same labels and are split to several outgoing paths, we assume that all incoming 
traffic is split with the same ratio.  

 As stated before, labels can be stacked and it can happen that a label is not 
exchanged but removed at a router. This is indicated by special keywords in the LDP 
statistics (e.g. ―Pop Tag‖ instead of an outgoing label in Cisco‘s MPLS forwarding 
tables). We assume that the paths ends at the next router, if belonging to our topology 
and set in this case OL(r, p) = -1. 

Algorithm  

With the information described in Section 3.1, a ―forward-linking‖ of flows is given and we can 
calculate for each path p that passes through a router r its endpoints in our topology. We 
denote by Er,p the list of residual paths. Each element of Er,p represents a list of routers that 
connect r with its endpoints for path p and by Fr,p, the list of corresponding splitting factors. 
Each element of Fr,p is the part of the traffic of path p that uses the corresponding residual 
path. We have ∑k  Fr,p(k) = 1. 

The residual paths and splitting factors can be calculated recursively with algorithm 2. In case 
that r is the first router of path p we can add the traffic to the corresponding elements of the 

traffic matrix. Otherwise those elements are increased by mistake. Since all routers in the 
topology are treated, this error can be corrected: For the paths second routers we subtract the 
traffic of the corresponding elements of the traffic matrix, if the second router is not the last 
one. In this way, all traffic added by mistake is corrected, because each router that is not the 
first in a path, is the second for some other router of the topology. More precisely, this can be 
implemented as shown in algorithm 1. 

Figure 1 illustrates the stepwise execution of the algorithm for a topology of four routers and 
two flows each of which transporting 10 units of traffic. When processing router 1, the traffic 
matrix element TM(1, 4) is increased, while TM(2, 4) and TM(3, 4) are decreased. In later 
steps [2] and [3] in figure 1, the elements TM(2, 4) and TM(3, 4) are then set back to zero.  

Results 

The proposed method has been successfully deployed in Deutsche Telekom‘s global 
MPLS/IP Backbone network [13]. Even for topologies of more than 150 nodes, the calculation 
of traffic matrices for 15-minute average values could be carried out in real time, i.e. in less 
than one measurement interval on a commodity PC such that a continuous calculation was 
possible. The efficiency of the calculation also reduces the amount of data that has to be 
stored: The collected raw data doesn‘t have to be stored over a longer period, but only the 
calculated traffic matrices. 
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Conclusions 

The presented method to calculate traffic matrices in MPLS networks only requires the 
existence of a label based switching and a traffic accounting on this scale. The method does 
not depend on the way routing is controlled (e.g. explicit LSPs or shortest path routing based 
on IGP metrics). Apart from the abstract algorithm, we discussed the application in real life 
MPLS networks. At the moment there are some restrictions that result from incomplete 
availability of the statistical data and vary with the topology under consideration and the router 
vendor. On the other hand, for a given network the relevance of these restrictions can be 
easily analysed a priori. If they do not apply the method provides accurate traffic matrices for 
MPLS networks and is easy to implement.  

 

Local tag Outgoing tag 
or VC 

Prefix or Tunnel 
Id 

Bytes tag 
switched 

Outgoing 
interface 

12313 Pop tag 1.2.3.4/30 11344 P01/0 

12315 12337 1.2.3.6/32 243350 P01/0 

 12326 1.2.3.6/32 237605 P05/0 

12316 12338 1.2.2.2/32 374291 P01/0 

 12327 1.2.2.2/32 286587 P05/0 

Table A-1: Output of “show mpls forwarding-table” in Cisco’s IOS [3]  

FEC Type Packets Bytes Shared 

1.2.3.4/32 Transit   48239   234242 No 

 Ingress   32122     12312 No 

1.2.3.5/32 Transit 123123 1057084 Yes 

 Ingress 543454   243350 No 

1.2.3.6/32 Transit    34323   237605 No 

 Ingress       343   374291 No 

Table A-2: Output of “show ldp traffic-statistics” in Juniper’s JunOS [9] 
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A.2.5 Inaccuracy Problems for Situation Awareness Using Standard OLSR Routing 

Another case study is focused on using the optimized link state routing (OLSR, RFC 3626, 
www.ietf.org/rfc/rfc3626.txt) as the standard routing protocol of the MANET working group at 
the IETF for situation awareness. We consider wireless broadcasting nodes placed at different 
locations spread over an area even without mobility. We assume that two nodes can directly 
exchange messages when their distance does not exceed a common transmission range. In 
this way, the transmission links between nodes and the network topology is determined by the 
node locations. 

The nodes route messages via OLSR over multiple hops, including Hello and topology control 
(TC) messages at default intervals of 2 and 5 seconds, respectively. We consider the queue 
size of messages that arrived at a node but are not yet forwarded towards the destination as a 
QoS measure. OLSR is extended to distribute the queue size such that each node is aware of 
the queue size at all other nodes subject to a delay until routing updates are received between 
nodes. The queue size information is not used for load balancing. To store the QoS-related 
state associated with a node, a new field is added to the neighbourhood information base and 
to the topology information base maintained by the protocol. To populate these fields, the 
message format of Hello and TC messages were extended as well. Table 111 summarizes the 
parameters of the modeling and simulation parameters. 

In this scenario, we study the absolute difference between the current queue size at a node 
and the aged information about it, which is available at the other nodes through routing 
messages at the same time, as a measure for inaccuracy of the routing information state.  

Figure A-Figure A-13 combines the evaluation of deviations in queue size information with the 
age of the information at the nodes. The k-th column gives the mean deviation for nodes 
whose information is aged between k-1 and k seconds or is larger than 21s in the last column. 

 

Simulator Parameters 

Network Type  IEEE 802.11 

Propagation model Two-Ray-Ground  

Mobility model Static 

Transmission range 250 m 

Network topology 50 nodes randomly located in 1 km
2
 

Traffic model 20 random source - destination pairs, 

constant messaging intervals:        
0.2s, 0.14s, 0.09s, 0.04s, 0.02s for 

different traffic load levels 

Packet size 128 Byte 

Queue for max. 50 packets; Tail-Drop 

Simulation time 200s; 50s start phase not evaluated 
 

Table A-3: Simulation Parameters 

 

As can be expected, the deviation is essentially increasing with the traffic load, which varies in 

http://www.ietf.org/rfc/rfc3626.txt
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the five curves by a factor of 10 from low and medium load up to congestion. Inaccuracy is 
also increasing with knowledge age, although not monotonically and partly even decreasing 
for the low load curves. This effect is due to the fact that the paths of messages utilize nodes 
in the middle of the square area more often than nodes in the outer regions. Thus the nodes in 
the middle experience higher load and queue variability. But the knowledge age about nodes 
in the outer regions is larger, while they have a low and less variable queue size. This trade-
off causes a tendency to decrease the inaccuracy in spite of larger knowledge age, which 
becomes apparent especially for the low traffic curves. 
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Figure A-13: Inaccuracy in routing information for situation awareness 

We also analyzed the impact of sending more frequent Hello and TC messages but did not 
obtain a positive impact on the overall inaccuracy level. In order to reduce knowledge age, we 
enhanced the routing by a probing scheme. The current state of a node is looked up by a 
probing message which is triggered by a threshold for the age of information. Probe messages 
are fully exploited by updating the new status information for all nodes on their paths as well 
as for nodes which receive the information due to broadcasting in the surrounding of the path.  
The probing scheme was able to reduce the mean knowledge age to about half, but in spite of 
the improvement in knowledge age, probing was unable to reduce the inaccuracy in the queue 
size estimates. This is also apparent from the results in Figure A-13, since the inaccuracy 
level stays almost constant for knowledge ages of 5 and more. Only for ages below 3 seconds 
essential improvements of the accuracy are observed. 

This case study shows that inaccuracy of routing information can be high in many wireless 
and mobile communication scenarios. Inaccuracy referring to mobility or high churn instead of 
queue sizes in the considered fixed topology will also affect the transport of routing messages 
which may cause even more inaccuracy due to route flapping and loops.  

When high dynamics impedes convergence of link state and distance vector routing protocols, 
then flooding and random walks can be used as well as methods combining flooding, random 
walks with partial routing knowledge [HaKu]. 

[HaKu] G. Hasslinger and T. Kunz, Efficiency of search methods in dynamic wireless 
networks, Proc. Wireless and Mobility, Barcelona, Spain, Springer LNCS 5122 (2008) 142-156 
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B Cooperation Strategies for Anomaly Detection (in Self-Protecting 
Networks) 

 As strategies are being developed that benefit of the collaboration of network entities to 
achieve superior performance in self-protection and self-management. Challenges are tackled 
by the components which are best suited to the respective task. Self-management tasks 
disburden the administrators of the network by allowing controlling heterogeneous 
components using high-level policies.  

Self-management implies that the network can anticipate, detect, identify and protect against 
threats that disrupt normal operation. Self-protecting components detect abnormal hostile 
behaviour and take corrective actions to become less vulnerable; they implement a control 
loop for anomaly detection and triggering of countermeasures. 

Collaborative self-protection relies upon distributed detection of anomalies to gain significantly 
in oversight and specialization. The cooperation among the nodes adds a dimension that can 
be exploited to enhance the detection capabilities of the network. 

Cooperation for self-protection extends towards aspects of 

 Task distribution 

 Information sharing 

 Cooperative joint decision making 

To address these points, we investigated concepts for collaborative self-protection of 
networks. We have then exemplified the challenges involved in addressing a typical network 
scenario; the protection against distributed denial of service attacks.  

Bandwidth is a scarce resource which must be diligently and fairly assigned to the legitimate 
users of a system. While usage calculations help to invest in bandwidth resources with relative 
success, phenomena like flash crowds, abusive and malicious usage may diminish the 
availability to our services, or even result in a complete Denial of Service (DoS). An overload 
of system or network resources commonly renders services completely unavailable. DoS 
attacks account for some of the largest and highly visible damages in the Internet of today. 
Administrative measures to prevent such behaviour from the user side are difficult, if not 
impossible to take. Mitigation attempts may always exclude regular customers from the 
service. A sacrifice of functionality and comfort is the price to be paid for applying additional 
security policies. To maintain a reasonable security/functionality equilibrium is not an easy 
task.  

The collaborative approach we present to this problem is to leverage the specialization of the 
protected services on the individual protocols they process. Services and components in the 
network may report beneficial and malicious usage to reactive components in the network. 
These components react by shaping or filtering the traffic according to the valuation of its 
services.  In other words, the approach is to mitigate bandwidth overload independently of its 
causes while maintaining a high availability of the service. The system should react in case of 
resource consuming behaviours and conditions without distinguishing between attackers or 
legal requests. The objective is to manage and maintain the service available for the target 
audience. In this sense, if our service is available as we want it to be, we can manage it and 
be content.  

The approach consists of a cooperation of three types of component. The protected services 
provide valuations for their users. These valuations are mapped to an uniform range per 
service, which we define as [−1.0; 1.0]∈ R. Semantically, this corresponds to the usefulness of 
the user for the service or business objective. Hence, every service can only provide a 
subjective classification of its users. These numerical ranges are easily aggregated, weighted, 
and forwarded to other components without losing their inherent meaning. A website may 
serve as example here: A user visiting the site with low frequency might get a slightly positive 
rating. A site scraper with high frequency a slightly negative one. A successful login with a 
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user account receives a more positive rating. Successfully purchasing a product receives an 
even higher rank.  

These observations will be reported to either a central Management Controller (MC) 
component, or a multiplicity of controllers whose major task is to collect and process this 
information. At the same time, the Controller receives traffic statistics from a measurement 
component on a central router. The observed metrics are: The total volume of traffic passing 
the router; and the volume of traffic per network flow reaching the system. The first metric 
allows the Controller to detect if the processing capacity of the system is about to be 
exhausted. A threshold could be set at a sufficiently large fraction, e.g. to 95% of the traffic 
that can be safely processed.  

The second metric allows to automatically generating rules in order to protect the services 
against overloading. In the case of overload, the Controller will generate filters on these users 
which have the lowest aggregated rating across all services, while estimating the saved 
bandwidth using the bandwidth per user metric. This process continues until the estimated 
total bandwidth after filtering is below the indicated threshold. In order to restore normal 
operation after an overload, the filters may be slowly eroded when the total traffic reaches a 
sufficiently low level.  

C Extended Comparison of 4WARD INM with Related Projects  
in EU and US 

ANA – Autonomic Network Architecture 

http://www.ana-project.org/ 

The goal of this project is to design and develop a novel network architecture beyond legacy 
Internet technology that can demonstrate the feasibility and properties of autonomic 
networking. The ANA architecture will facilitate self-* features such as self-configuration, self-
optimisation, self-monitoring, self-management, self-repair, and self-protection. 

This work aims at including monitoring as an integral part of the network architecture. This 
brings a set of new requirements: monitoring needs to be dynamic, adaptive and 
programmable. In contrast to traditional approaches, monitoring must not assume a priori 
knowledge about the network itself, but instead monitoring functions may be placed and self-
configured dynamically in the network. For this to happen it is required that modules explore 
the available monitoring support in their environment at runtime. 

Besides performing conceptual work, ANA puts emphasis on prototypical realisation. The 
architecture relies on the paradigm of functional composition of modules at runtime. A number 
of functional blocks are currently under development, e.g., packet capturing, sampling and 
system monitoring.  

The problems addressed by ANA are close to those addressed by 4WARD. Both projects aim 
at increasing the level of network automation. Nevertheless ANA should be regarded as a 
generic architecture for autonomic devices, while InNet Management will leverage on a tight 
coupling of management functions with the services deployed on a device, like virtualisation of 
resources or generic paths. 

For 4WARD, it is of particular interest the work in ANA on design principles, mechanisms and 
proof-of-concepts for autonomic network management. This includes functions for monitoring, 
self-optimisation and resilience. 

 

E3 

https://ict-e3.eu/  

E3 is aiming at a gradual, non-disruptive evolution of current wireless systems into an 
integrated, scalable and efficiently managed B3G cognitive radio system framework. E3 will 
optimise the use of the radio resources and spectrum, following cognitive radio and cognitive 

http://www.ana-project.org/
https://ict-e3.eu/
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network paradigms characterized by reconfigurable, self-adaptive, autonomic and 
collaborative features. 

Areas of work comprise  

 identification of market opportunities, business cases and regulation issues;  

 definition of the Cognitive Radio Architecture including the definition of generic 
functional blocks for cognitive radio management;  

 collaborative cognitive radio resource management, spectrum management & self-
organization with focus on network-based decisions;  

 autonomous functionalities & algorithms focusing on terminal-based decisions (e.g. 
access of terminals to ―wireless highways‖);  

 supporting functions for heterogeneous standards defining enablers for cognitive 
operation, (e.g. Cognitive Pilot Channel (CPC) to support an efficient discovery of the 
available radio accesses and to help in reconfiguration management in heterogeneous 
wireless environment between network and user terminals) 

 prototyping environment for validation of E3 concepts. 

Management functions in E3 will be distributed over different network elements.  

Both, E3 and 4WARD aim at similar goals, namely designing autonomic management 
systems, i.e., management systems with self-* functionality. The difference between the 
projects is that E3 focus on wireless scenarios, while 4WARD has a wider scope in terms of 
considered scenarios. 

 

AutoI - The Autonomic Internet 

http://www.ist-autoi.eu/  

This project proposes to transition from a service agnostic Internet to a service-aware network 
where resources are managed by applying autonomic principles. The key premise behind 
AutoI is that networks today have no awareness of services running over them. While there 
are some nodes that support QoS solutions, this is far from uniform with the vast majority of 
nodes.  

The approach to network management in AutoI is catered for in one of the 5 planes of the 
AutoI architecture, which are Virtualisation, Orchestration, Management, Service Enabler and 
Knowledge planes. The Management Plane promotes in-network management where the 
management system is distributed across the routing nodes in the Internet. Specifically, a 
policy based autonomic control loop exists for each node that monitors, decides and act 
accordingly in order to support self-FCAPS functionality. Inter domain aspects in AutoI are 
catered for using the Orchestration Plane that can handle federation, negotiation and 
distribution between the autonomic managed domains (named AMS in AutoI). Therefore each 
AMS performs management with local objectives, but can itself be managed to abide by more 
global objectives via orchestration. 

Similarly to 4WARD, this project aims at developing a distributed self-managing management 
plane. However, unlike 4WARD, this project focuses on virtual resources.  

 

Simple Economic Management Approaches of Overlay Traffic in Heterogeneous 
Internet Topologies 

http://www.smoothit.org/ 

SmoothIT addresses innovatively the detailed economic and technical mechanisms for a 
flexible, secure, and scalable traffic management of overlay networks in tomorrow's ISPs and 
telecommunication operators networking infrastructure. 

http://www.ist-autoi.eu/
http://www.smoothit.org/
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For today's Telecommunication Service Providers (telco) and Internet Service Providers (ISP) 
the issue arising is: how to control and manage network traffic stemming from overlay-based 
applications. As the structure of overlays determines the traffic flows in ISP networks, it is 
highly efficient for an ISP to influence overlay configuration based on information on their 
structure. Overlays have to be managed to maximize the benefit for multiple operators/ISPs 
involved, and to increase the capability to withstand faults and balance the network load. 

Therefore, SmoothIT pursues the following major objectives: 

 To structure overlays in a way that is efficient or optimal, both for user communities and for 
ISPs. This is to be attained by means of incentive mechanisms. 

 To study and define key requirements for a commercial application of Economic Traffic 
Management (ETM) schemes for ISPs and telcos. 

 In order to advance traffic management beyond traditional limits, specialized economic 
theory will be applied for building in a fully decentralized way network efficient Internet-
based overlay services in multi-domain scenarios, solving the information asymmetry 
problem. 

 To design, prototype, and validate the necessary networking infrastructure and their 
components for an efficient implementation of such economic traffic management 
mechanisms in an IP testbed and trial network. 

 To develop an optimized incentive-driven signaling approach for defining (theory) and 
delivering (technology) economic signals across domain boundaries in support of co-
operating and competing providers in an interconnected heterogeneous network 
environment. 

 To stress operator-orientation by verifying key results of the work through ISP and telco 
requirements as well as its supporting technology. 

4WARD is broader in scope and is obviously related to SmoothIT in several ways. Overlay 
networks as a main topic of SmoothIT represent concrete scenarios within the more abstract 
and generalized virtualization framework to be developed by 4WARD. Traffic management is 
addressed in SmoothIT by similar distributed and self-organizing concepts as the broader 
InNetworkManagement (INM) approach of 4WARD. Traffic management schemes are in the 
focus of both EU projects, where the focus of SmoothIT on economic and game theoretical 
view of cooperative and competing multi-provider behaviour is a supplement to the study of 
advanced technical approaches for network management architecture and algorithms in WP4 
of 4WARD. Obviously there is much potential for both projects to profit from each other. 

 

Architectural Support for Network Trouble-Shooting 

http://www.nets-find.net/Funded/ArchtSupportNet.php 

This project focuses on troubleshooting in networked systems, including failure detection, 
identification, root-cause analysis and attributing problems to responsible parties. The project 
team argues that while troubleshooting is a crucial and fundamental problem, the current 
architecture provides very little support to perform this in an efficient manner. They therefore 
propose to annotate network traffic with meta-information such as the role, path, or 
manifestation of a packet. This would then facilitate causality tracking in the network in terms 
of how instances of network activity relates to earlier activities. The team also intends to study 
more elaborate forms of logging of network activity, in which the logging entities have an 
active role in requesting information from generating entities, and how to construct aggregated 
views of several logs in certain repositories. 

Although this project and 4WARD have the common goal of achieving efficient 
troubleshooting, the approaches are different. 4WARD does not consider annotating network 
traffic for troubleshooting, but instead focuses on algorithms that do not necessarily need such 
data. Also, 4WARD mainly studies real-time in-network management using distributed 

https://webmail.md.kth.se/h3/horde/services/go.php?url=http%3A%2F%2Fwww.nets-find.net%2FFunded%2FArchtSupportNet.php
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approaches, while this project focus more on centralized solutions for studying historical data. 
Still, as the possibility of annotating network traffic could have implications on the algorithms 
developed within 4WARD, it is of some interest to study the results of this project. 

 

A Framework for Manageability in Future Routing Systems 

http://www.nets-find.net/Funded/Framework.php 

The goal of this project is to develop a framework for specifying, understanding, and 
evaluating what features should/could be "designed-in" into routing systems in support of 
manageability and to evaluate design choices and trade-offs thereof in terms of performance 
and manageability. Routing manageability is the ability of routing to monitor, control, and 
trouble-shoot its operation. Manageability is based on: 

 Sensing capability - monitoring and detecting of changes in the network state and 
association of decision rules and actions taken by a routing element with the 
appropriate events in the network state. 

 Logging and Reporting capability – functions to locally collect and record visibility 
information. The reporting implementation is seen as in-band or out-of-band. 

 Change or Event Notification capability – publish/subscribe like functionality related to 
the routing management reports 

 Querying capability – is the ability for another entity to query a routing element for 
certain information. 

 Real-time Actuation capability – real-time actions required to take when some pre-
specified conditions are met. 

Finally, using the described above functionality a manageable distributed computation routing 
protocol will be developed. It will encompass distributed loop-free path computations. 

The vision pursued by this project is in line with that of 4WARD. Therefore, we intend to 
closely study the approach used by this project and their results. 

 

Design for Manageability in the Next Generation Internet 

http://www.nets-find.net/Funded/Manageability.php  

The objectives of this project are to explore technology design alternatives for network 
management in Next Generation Internet (NGI), and produce an educational and outreach 
plan, enhancing networking curriculum. The project focuses on low-level building blocks that 
can be composed in different configurations to enable an Internet management 
plane. Examples of such blocks include protocols for data sharing and event detection 
mechanisms. The project emphasizes prototype development. It uses large-scale test-bed, 
and produces methodology for experimenting the design alternative, in addition to design 
documentation and some initial prototypes for the building blocks, as well as an educational 
plan and course material.  

While the project addresses NGI, it is not a complete clean slate approach, as 4WARD is. It 
addresses the evolutionary steps required to meet future demands. It assumes existing 
infrastructure and technologies, such as optical circuit-switching core networks, packet-
switching access networks, and OSI layered protocols.  

Similarly to 4WARD, this project aims at designing automated and intrinsic management 
solutions. The goals of both projects differ in that this project puts more emphasis on test-bed 
experimentation methodology. A second difference is that this project also considers 
educational and outreach plans. 

 

https://webmail.md.kth.se/h3/horde/services/go.php?url=http%3A%2F%2Fwww.nets-find.net%2FFunded%2FFramework.php
https://webmail.md.kth.se/h3/horde/services/go.php?url=http%3A%2F%2Fwww.nets-find.net%2FFunded%2FManageability.php
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Model-based diagnosis in the Knowledge Plane 

http://www.nets-find.net/Funded/ModelBased.php 

The goal of this project is to develop a Knowledge Plane (KP) that serves as a component of a 
Future Internet, which is self-managing and self-diagnosing. The KP locates, collects, and 
manages existing knowledge in a distributed way and specifies a framework that supports 
queries to get that knowledge. This effort includes the development and documentation of a 
high-level architectural framework for the KP and the identification of collaborators with 
expertise in specific problem areas that are the target customers of the KP architecture.  

The goals of this project and Task 4.3 in 4WARD overlap partially, for they aim at collecting 
and offering information to decision-making processes. Hence, we intend to closely study the 
results achieved within this project. 

 

A Network-Wide Hashing Infrastructure for Measurement and Monitoring 

http://www.nets-find.net/Funded/NetworkWide.php 

The focus of this project is network monitoring. The goal of the project team is to engineer 
monitoring systems that help improving our understanding of network behaviour. They argue 
that this is not possible with current monitoring systems. Therefore, they advocate for a clean 
slate approach to network monitoring, and their vision consists in all network elements having 
a generic functionality for creating sketches of local metrics. This functionality uses hash 
functions and controls the trade-off between local memory space and monitoring accuracy. 
The project also considers creating network-wide views by aggregating local sketches. 

The goals of 4WARD and this project overlap. Both projects, for instance, develop algorithms 
for network monitoring with controllable performance. The specific techniques considered by 
each project are different though (hash functions vs. aggregation functions). While 4WARD 
has a strong focus on real-time monitoring, this FIND project considers historic data as well. 
As some WP4 work is complementary to this FIND project, we intend to closely study the 
results achieved within this project. 

 

Towards Complexity-Oblivious Network Management 

http://www.nets-find.net/Funded/TowardsComplexity.php 

This project proposes the creation of a Complexity-oblivious Network Management (CONMan) 
in order to simplify network management. Two sources of complexity are cited. 
First, the current management plane depends on the data plane. An example cited is as 
follows "SNMP operates on top of the data plane and hence, management protocols rely on 
the correct operation of the very thing they are supposed to manage." 
The second source is the growing complexity of networks. The example cited in this case 
shows that relatively simple network devices can have many thousands of management 
objects. 

It is proposed to reduce the complexity of network management by using new and novel 
techniques. Firstly, all data plane protocols must expose a generic complexity oblivious 
management interface. Management operations then get carried out in a distributed fashion 
by software network managers located on network devices. These are managed by policies 
which originate as a high-level domain specific language. This is broken down from goals to 
specification by these software network managers. The architecture, design and 
implementation of the software is a framework for new network management objects. 
This bears many similarities to 4WARD. As implied by the use of 'new and novel  
techniques', there is a certain parallel with the clean slate approach adopted by 4WARD  
of using 'novel techniques'. The project also proposes that data plane protocols should  
all expose a generic management interface. This is extended in the work of 4WARD by not  
only specifying data plane protocols. The notion of management operations being carried  

https://webmail.md.kth.se/h3/horde/services/go.php?url=http%3A%2F%2Fwww.nets-find.net%2FFunded%2FModelBased.php
http://www.nets-find.net/Funded/NetworkWide.php
https://webmail.md.kth.se/h3/horde/services/go.php?url=http%3A%2F%2Fwww.nets-find.net%2FFunded%2FTowardsComplexity.php
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out by network managers located on distributed network devices is also developed in 4WARD  
with self managing entities and functional components where the mapping to nodes is not  
explicitly stated. While not completed yet, 4WARD has already considered the idea of  
breaking high-level 'governance' into low-level SLAs to achieve a goal to specification  
mapping using the SE's and FC's. Finally, the style of architecture, design and  
implementation through a technical framework is a common trait between both projects. As 
both, this project and 4WARD have similar goals and propose similar approaches, we intend 
to closely study the results achieved within this project. 

 

 

 


